究竟是什么新技术能延长锂电池的寿命和续航里程?
来源:宝鄂实业
2019-07-03 15:36
点击量:次
为了早日突破锂离子电池车辆的续航里程瓶颈,并实现更长久的电池寿命,丰田刚刚开发出了一种听上去“高大上”的新技术。
这项技术的诞生,使得锂电池在充放电时,锂离子在电解液中的移动状态将可以被观察到。
就技术角度而言,锂离子失衡是造成锂离子电池性能下降的一大原因。丰田的新技术就是结合高强度X射线和含重元素的电解液,利用层叠电池将锂离子在电解液中的状态可视化。这种观察方法能够对锂离子失衡的情况进行实时观察,从而为提升外插充电式混合动力车(PHEV)和电动车(EV)的续航里程以及电池的寿命等明确研发方向。
*此次新研发的观察方法
锂离子电池的正极为金属氧化物,负极为碳材料,并采用有机电解液。在充电时,锂离子在电解液中从正极移动到负极。放电时,锂离子在电解液中则从负极移动到正极,从而形成电流。因此,电解液中的锂离子在充放电的过程中发挥着重要的作用。
*放电时的状态
经过确认,充放电会导致电极和电解液中的锂离子失衡,这是制约电池性能的主要原因之一。在分析锂离子失衡的机理时,若利用过去的方法,无法在与产品的使用环境和条件相同的状态下确认锂离子在电解液中的移动状态。这令技术人员很难找到问题的根源,也就无法做到有的放矢。
为了解决这个问题,丰田发布的新的观察方法有两个特点。
第一,运用大型同步辐射设施“Spring-8”,这是全球最高性能的放射性研究设施,以国立研究开发法人理化学研究所(理研)作为业主全面运营,运维管理则由公益财团法人高辉度光科学研究中心(JASRI)负责。
该设施拥有的丰田光束线(株式会社丰田中央研究所在理研和JASRI的协助下设置的专用光束线)利用强度约为X射线装置10亿倍的高强度X射线,实现了0.65微米/像素的高分辨率以及100毫秒/张的高速测量。
*车载锂离子电池的内部结构和原理
第二,此观察方法中使用的,不是大多数锂离子电池所使用的含磷电解液,而是含重元素电解液,将在电解液中移动过程中与锂离子结合的“含磷离子”替换为“含重元素离子”。
与磷相比,重元素具有X射线不易穿透的性质,拍摄X射线穿透画面的阴影会更深,更加明显。这样一来,通过观察重元素的运动状态,就能够观察电解液中,与重元素结合的锂离子的失衡动向。
通过运用上述的方法,便可使用与产品相同的电池(层叠电池),在实际使用环境和条件相同的状态下,实时观察充放电的经过以及电解液中锂离子失衡的过程。
*放电时电解液中锂离子失衡
当然,这项观察方法的诞生也不是丰田汽车公司一家之功,而是由丰田中央研究所、日本汽车零部件综合研究所以及北海道大学、东北大学、京都大学、立命馆大学共同研发的。
此后,技术人员将可以通过观察锂离子在不同正负极和隔板、电解液的材料和构造以及不同电池控制方式下的运动状态,来分析电池性能下降的机理,从而推动旨在提升搭载车辆续航里程以及电池的寿命等电池性能及耐用性的研发。很多情况下我们会将欧姆阻抗与接触阻抗混为一谈,但是是实际上接触阻抗与欧姆阻抗还是有很大区别的,接触阻抗主要来自于活性物质颗粒之间,以及活性物质与集流体之间的接触阻抗,这种阻抗看上去像是一个纯电阻,但是考虑到这些颗粒存在比较大的表面积(裸露在电解液之中),因此接触阻抗实际上可以看作一个欧姆阻抗与电容的并联形式,与欧姆阻抗具有不同的弛豫时间,可以通过交流阻抗测试与欧姆阻抗进行区分。
等效电路拟合是处理EIS数据最为常见的方法,但是采用等效电路拟合时只有阻抗的弛豫时间的区别达到一到两个数量级以上时才能进行区分,因此这种方法实际上是一种分辨率较低的方法,因此Xing Zhou在这里并没有采用等效电路拟合的方法,而是采用了弛豫时间分布(DRT)的方法对交流阻抗数据进行处理。
弛豫时间分布曲线能够看到在整个范围内包含四个峰P1-P4,每个峰都代表一个弛豫时间不同的阻抗。从下图a我们能够看到P1和P2峰与电池的SoC状态关系比较小,而P3和P4峰则与电池的SoC状态存在密切的相关性,我们知道电荷交换阻抗与活性物质的荷电状态存在密切的关系,因此P3和P4主要反映的电荷交换阻抗。从下图b我们注意到随着温度的降低几个主要的峰都出现了一定程度的右移的现象,并且极化阻抗值也出现了明显的增加,特别是P2峰相比于P1峰受到温度的影响更大,我们知道SEI膜的阻抗受温度的影响非常大,而接触阻抗受温度影响相对比较小,因此P1峰主要反映接触阻抗,P2峰主要反映SEI膜阻抗。