定制热线: 400-678-3556

行业资讯

何为锂电池热失控及热失控扩散?

来源:宝鄂实业    2019-07-09 16:40    点击量:
热失控
 
电化学电池以不可控制的方式通过自加热升高其温度的事故即为热失控。目前,多个标准中都有针对热失控的定义,
 
A1阶段:电芯在使用过程中首先会产生初始能量热扰动,引起热扰动的能量来源包括电芯内部正常的锂离子充放电化学反应、内部非正常化学反应(如不符合额定电压、电流、温度或有热传导的滥用造成的内部剧烈反应,外部和内部机械结构损伤最终造成的内部剧烈反应等),从而导致电芯产生热量。与此同时,电芯会向外进行热量散逸,同时部分化学反应会伴随吸热;
 
A2阶段:当电芯散逸的热量+反应消耗的热量≥电芯获得的热量时,电芯是安全的;
 
A3阶段:当电芯散逸的热量+反应消耗的热量<电芯获得的热量时,电芯产生温升ΔT。如果ΔT没有带来电芯内部新的放热反应,则电芯是安全的;
 
A4阶段:如有新的放热反应(如SEI膜的分解放热、电解液的分解放热、氟化物粘结剂的分解放热、电解液分解放热、正极活性材料分解放热、过充电时沉积出的金属锂与电解液发生反应放热、金属锂与粘结剂的反应放热、可燃物质的燃烧等),当这些反应放热所带来的电芯内部反应速度不可控时,电芯温度上升将不可控,便会引起A5阶段中我们常规所定义的热失控,各储能相关标准中规定的电芯内部放热反应引起不可控温升的现象。
 
电芯在使用后的状态描述可分为未失效和失效两种状态。未失效即为电芯还可以在满足使用条件下继续使用,而失效状态则表明电芯不再适于继续使用。失效的状态描述又可分为安全状态和非安全状态两种:安全状态仅表现为电芯的容量衰减异常、内阻变化异常等;而非安全状态一般指电芯对外将产生不可控的能量释放。
 
当电芯发生热失控时,其能量释放、有毒有害物质释放的不可控即被定义为起火、爆炸,此时即可判定电芯发生了安全事故。
 
2、热失控扩散
 
热失控电池产生的热量高于它可以消散的热量时,热量进一步积累,可能导致火灾,爆炸和气体释放。如果电池系统中,由于一个电芯产生热失控而引发其他电芯热失控,即为热失控扩散。国家标准GB/T 36276-2018中给出的热失控扩散定义如表2所示。
 
1、热失控的引发原因
 
通过对不同标准中热失控的定义对比发现,热失控更多是被描述为:电池内部发生不可控温升的现象。
 
在电芯的实际使用过程中,其材料可逆容量、SEI阻抗、电解液组分、结构件物理指标等是一个动态变化过程,直接影响电芯充放电曲线、内阻等动态变化。如果电芯的实际使用条件(如温度限值、电压限值、电流值等)没有动态调整与之匹配,从而造成电芯内部结构加速损伤以及引发部分关键原材料加速失效的情况,称之为电芯滥用。滥用经常会最终导致电芯安全失效,即热失控。
 
热失控现象的产生原因可以分为两类:内因和外因。内因主要指在电池设计及制造过程中产生的原因;外因主要指在电池运输、安装及运行维护过程中由于人员、外部条件等导致的原因。分类概括如下▼
在诸多标准中提及的热失控触发方案仅是对其滥用方式的一种模拟,并不能完全表征电芯所有可能诱发热失控的原因。
 
2、热失控扩散的引发原因
 
电池系统发生热失控扩散最直接的诱因,包括发生热失控的电芯对其周围其他电芯的能量传导(包括热能、电能、机械能等)以及喷出物起火等。
 
能量传导
 
①热能传导:当电池发生热失控时,通过电池正面接触而产生的侧向加热非常剧烈,导致被加热电池内部在厚度方向上温度梯度变大,由于电池前端面温度达到热失控触发温度进而产生热失控扩散。
 
②电能传导:某一电芯单体热失控与隔膜大面积收缩造成内部短路,这两者可互为因果关系,最终都会造成发生热失控的电芯能量迅速下降。在电池模块并联单元中,其他电芯会向发生热失控的电芯放电,导致发生热失控的电芯温度升高更多,同时,靠近已发生热失控单体的电芯将比远端电芯以更大功率放电,导致其温度迅速升高,从而促进热失控的扩散。
 
③机械能传导:某一电芯单体发生热失控,可能会对模组机械结构造成影响,或者其发生爆炸造成瞬间大量能量释放,对其周边的电芯也会造成一定程度的机械损伤,而这些机械损伤将增加其周边电芯发生失效的风险,严重时可直接导致其周边电芯发生热失控。
 
喷出物起火
 
电池发生热失控时会喷出高温气体和颗粒混合物,这些气体具有可燃性,极易发生火灾,这些高温喷出物以及喷出物燃烧产生的火焰会加热周围电池,从而加速热失控扩散的进程。
在电池系统发生热失控扩散过程中,上述多种诱因通常会同时发生作用。