定制热线: 400-678-3556

行业资讯

锂电池液冷系统设计的需求有哪些?

来源:宝鄂实业    2019-07-18 15:10    点击量:
动力锂电池老化过程,温度是最重要的影响因素,获得适宜的工作温度,能够减缓电池的老化同时发挥电池的最优性能。动力电池包内,集成几百几千只电池单体在一个系统中,单体性能的一致性直接影响电池组整体的性能和寿命。处在电池包内不同位置,自然散热条件千差万别,想要获得一致的老化进度,先需要创造一致的工作温度。动力锂电池热管理系统的设计目标两个:
1)电池包内部维持在合理温度范围内;
2)不同电芯温差尽可能小。
1 需求导入
 
一个工程项目的设计,第一步务必理清客户需求。除了一般需求,还应该设身处地的挖掘周边需求,即使客户没有提及,我们最好提前私下加以考虑。对于液冷系统,动力锂电池包的基本需求,如下面所列举的项目所示。
电芯类型及参数
 
锂电池体系选择,材料体系不同,带来热特性的区别。以现在主流的锰酸锂、磷酸铁锂和三元锂为例。锰酸锂,低温特性比较好,但高温耐老化性能较差,寿命较短,能量密度中等;磷酸铁锂,低温放电能力差,高温性能好,能量密度偏低;三元锂,高低温性能处于中上,能量密度高,寿命长,但相对安全性偏低。电芯选型,就是根据能量密度、功率密度、循环性能、成本限制等主要要求选择锂电池类型。电芯类型确定,热管理的热源计算参数才能确定。
 
热管理系统关心的电池参数包括:标称电压和电压范围,最大持续工作电流,能量密度,功率密度,电池内阻(新电池和寿命终了阶段)、热特性参数(等效比热容、等效热传导系数)
电池组由多少串并组成,等效连接电阻阻值,结构设计形式,可能的散热器布置形式。
电池包内结构布置
 
电池包箱体空间形状及尺寸,电池模组分布情形,高低压电缆走线位置,
 
系统最大发热功率(电池全生命周期、汽车全工况)
 
电芯、模组及电池包整体能够达到的持续最大功率及相应条件下的发热功率,电池寿命终点考虑各老化因素以后的持续最大发热功率,汽车运行工况中的最大发热功率和持续时间,汽车持续最高速运行的最大发热功率和持续时间。
 
另一个需要确定的需求,系统的最大发热功率,是否需要考虑热失控的情形。
 
应用极端环境(温度)
 
车辆目标销售地区的最高环境温度和持续时间,最低环境温度和持续时间。
 
电池包热管理目标
 
目标主要包括最高、最低工作温度范围和最大温差。
 
2 总体设计
 
总体设计,针对输入的需求,总体考虑冷却系统的框架。
 
根据系统发热功率密度以及密封性、允许温度范围、成本要求等,选择适合的冷却方式,初步确定散热器类型,加热方式。参考车辆预留空间,大体考虑设备的布置和固定方式。
3 计算
 
锂电芯发热速率计算
 
人们根据对锂电池电化学反应过程的认识,通常把充放电过程中的热量划分成四部分:反应热、欧姆热、极化热和副反应热。对于新电芯,副反应热比例极小,可以忽略不计。但到了电池生命的后期,这种简化可能会带来较大偏差。
 
其中,各项系数K表示锂电池在长宽高各方向上的导热系数,T为温度,q是电池单位体积的热生成率,ρ代表电池密度,cp为电池比热容,t为时间。
 
该模型简化了其他热传递模式,只保留在电池内部热传递的主要形式——热传导方式;热量只在电芯中心生成,与电芯的实际结构存在较大差异;系统参数,不考虑随温度变化而变化的情形,设定热传导系数和热容量为常数。对于各个方向上导热系数的取值,有一种思路是,按照电芯内各种组成材料的加权平均取值。
 
已经存在的大量针对锂电池电芯热模型的研究,有的考虑电芯卷绕或者层叠的实际物理形式,设置每层都是热源,层与层之间有热量传递的过程;有的详细描绘电芯内部不同组成部分的发热情形,并综合各种热源的作用,从电芯内部生热并在三维空间中进行传播的情形。
 
在设计散热器或者集热板的形式及其在电池模组中放置的位置时,电芯中具体哪个部位发热,哪个点温度最高,对设计结果有确定的影响。但在面对电池包热管理系统设计,单颗电芯产生的主要影响是产热量和产热速率。过多的细节反而占据计算资源。