详解电池老化衰减机理与安全性能演变的关系
来源:宝鄂实业
2019-09-03 20:12
点击量:次
正极:正极材料老化衰减机理包括晶体结构混排、表面形成钝化膜、过渡金属溶解等。其中,正极材料的晶体结构在循环过程中有可能发生混排,变得不稳定,会引起正极材料热稳定性下降,在较低的温度下便开始分解产氧,影响电池的热失控温度TTR,导致电池热稳定性下降。而正极表面形成钝化膜会增加电池的内阻,导致电池充放电过程中的焦耳热增加,耐过充电能力下降。
正极的过渡金属离子溶解不仅仅会导致正极活性材料损失,溶解的过渡金属离子还会穿过隔膜,在负极表面析出,加速负极SEI 膜的形成和稳定,有助于提升电池热稳定性。正极的老化会导致活性材料的损失,在过充电过程中,在过充入较少的电量下便有可能完全脱锂产氧,导致电池的耐过充能力下降。
负极:负极一大问题是表面析锂。析出的金属锂非常活泼,在很低的温度下(<50 ℃)便开始与电解液发生反应,引起电池自产热起始温度Tonset的明显下降和自产热速率的快速上升,严重危害电池的安全性。而负极表面稳定的SEI膜的形成则有助于保护石墨负极,提升电池的热稳定性。另外,负极活性材料的损失会使得电池在过充电过程中更早地开始析锂,削弱电池的耐过充能力。
其它:电解液在老化过程中可能会发生氧化分解,产生气体,导致电池内压增加甚至体积膨胀,在安全测试过程中更加容易发生喷阀,降低电池的安全性。而电池的内阻在老化过程中会由于电解液消耗、电极表面钝化膜增厚、黏结剂/导电剂失效等原因而不断增加,导致电池充放电过程中的焦耳热增加,耐过充电能力下降。在老化过程中,铜集流体溶解并析出、隔膜老化等均会增加电池发生内短路的概率,降低电池的安全性。对于内部极片为卷芯结构的电池,卷芯在老化过程中会产生应力,进一步发生变形,导致各处的电解液浸润程度、电导率等产生差异,引起电流分布不均,容易发生局部析锂,并导致局部热点增加,降低电池的热稳定性。
总体而言,老化电池的耐过充能力会有一定程度的下降,主要由于内阻增加和正负极活性物质的减少,导致电池过充电过程中焦耳热增加,在更少的过充电量下便可能触发副反应,引发电池热失控。而在热稳定性方面,负极析锂会导致电池热稳定性的急剧下降。
锂离子电池的热失控通常由机械滥用、电滥用或热滥用等引发,电池内部会相继发生SEI膜分解反应、负极与电解液反应、正负极氧化还原反应等。当锂电池不断老化时,电池内部的副反应(SEI膜增厚、负极析锂、电解液氧化等)会引起电池容量的衰减和内阻的增加,而且导致电池的安全性能(耐热性能、耐过充性能等)也发生变化。
在常温/高温循环老化下,由于内阻的上升,电池在充放电下焦耳热增加,耐电滥用性能下降,电池热稳定性也会有一定程度的变化,变化规律与电池的材料体系和工艺水平相关;
在常温/高温储存老化下,电池的耐电滥用性能也会降低,但由于负极的SEI膜在储存过程中稳定性提升,电池的热稳定性会得到提升;在低温循环老化下,电池的热稳定性会急剧下降,主要原因是负极析锂,析出的锂金属非常活泼,在较低的温度下便可以与电解液发生反应,造成电池自产热温度Tonset降低和自产热速率剧增,严重危害电池的安全性。