定制热线: 400-678-3556

行业资讯

如何避免锂电池热失控?

来源:宝鄂实业    2019-09-09 14:28    点击量:
热失控的诱因是多元的,为此需要做出多重的预防措施,来避免热失控的发生。这就涉及到了电芯的设计和生产、电池管理BMS算法开发、电池包结构设计等多个方面的研究,全部展开讲过于庞杂,这里简单说一说在热管理软件层面怎么做,这是目前众多研究的重点,也是技术含量较高的一方面研究。
 
电池的状态和发动机是不一样的,有一些发动机易测量的变量,在电池这里并不容易估计。比如说燃油车剩余油量,很容易就可以通过油箱内的油的多少来读到,但电池的剩余电量( SOC),则通常要使用算法来进行估计。除了电量之外,电池的实际输出功率、电池寿命等等,都需要算法进行估计,这就使得电池管理策略(BMS)极为关键,而电池的热失控管理方法也属于BMS。
 
相关研究中,清华大学所开发的电池状态的联合估计算法,是在电池状态间相互耦合的关系基础上,同时估计电池的多个状态,包括SOC(State of Charge)、SOH(State of Health)、SOP(State of Power)和SOE(State of Energy)等状态的高精度联合估计。
 
电池状态的精确估计,有助于实时监测电池的充放电状态,避免过充放造成的热失控。
 
此外在另一项研究成果中,研究者通过状态估计与电池内短路模型的结合,可以有效识别是否发生了内短路,进而在热滥用发生之初,就对系统发出警告。从今年的众多过充造成自燃的事故来看,如何防止过充电,还有很多工作要做。
 
除此之外,如何隔离开发生热失控的电芯也是一个难题。当热失控发生,如果能够将发生问题的电芯或模组隔离开,就能够有效降低损失,避免自燃。同样是清华大学的研究者,对电池的热失控蔓延进行了研究,建立了一整套成熟的热扩散测试方法作为技术支持,并提出了电池包综合的热管理设计方案,包括了上表面连接汇流结构优化散热、下表面流道散热设计、电芯连接间隔面的隔热处理、以及电池包侧面布置半导体加热片的低温加热算法设计。这一系列设计保证了整个电池包有较为均匀的热状态,降低了热失控发生的风险。
 
围绕电池包综合热管理进行了全方位的立体设计▲围绕电池包综合热管理进行了全方位的立体设计
 
当然除了上述研究应用之外,电池包的设计制造自然是避免热失控的基本要求,相关措施包括改善电池包的框架设计,如降低电池包振动、防火层阻隔、加装钢板、防水防尘等等。
 
热失控,是一个看起来陌生、但却与头条新闻和实际生活息息相关的概念。小到三星手机,大到特斯拉汽车和波音飞机,都可能发生锂电池的热失控。
 
尽管科学工作者和工程师们,不断改进了设计、提升了算法,进而有效改善了车用锂电池组安全性,但是在生活里,我们对电池的使用还是应当更加谨慎。