为什么现代的常规潜艇不使用锂电池?性价比不高,缺乏安全性
来源:宝鄂实业
2019-03-19 11:04
点击量:次
自从电被发明出来之后,生活也就变得有趣起来了。后来又出现了电池,更是让生活变得方便,尤其是现在的一些移动电子产品,都是依靠着电池才能够实现随身携带。
电池这东西,自出现到现在已经更新换代好多了。而在目前,应用在移动电子设备上的一般都是锂电池。相比较市面上的其它种类的电池,同等单位内锂电池可以储存更多的能量,而且比较稳定。就算放着不用,本身放电也不多,重量又轻,寿命又长。集众多优点于一身,所以应用特别的广泛,各行各业都能够看见。但是,在常规潜艇上却是不使用锂电池的。锂电池的优势不是很明显吗,为什么不使用呢?
这其中的原因主要是以下几个方面:一个是成本,虽然说锂电池可以储存更多的能量,但是相同电量的锂电池制造成本是目前装配的铅酸电池的4倍以上,按照潜艇需要装备几十吨的量,那可是一笔大资金呀。还有就是使用寿命了,虽然说锂电池寿命长,但是那是在遵循满放满充的原则下的,军舰自然难以做到,要根据任务调配,这样安装的锂电池的寿命还不如其它的电池。最重要的一点就是安全性了,那就是锂电池容易爆炸。这是因为锂电池在充放电时会放热,不进行引导就容易爆炸。而潜艇是个密闭的空间,如果用海水冷却在战时就容易被敌军发现。所以,在这些因素的共同作用下,潜艇就没采用锂电池,而是铅酸电池。
不过,目前已经在研制新型的适用潜艇的锂电池了,估计在不久之后,也能在潜艇上看见锂电池的身影了。
电动汽车(EV)技术解决了减少温室气体排放的问题。电动汽车的概念侧重于替代能源的利用。然而,电动汽车系统目前在能源存储系统(ESS)方面面临安全、尺寸、成本和整体管理问题多个方面的挑战。此外,先进的电力电子技术在ESS中的应用,是提高EV性能的另外一个关键环节。本文回顾ESS技术,分类,特性,结构,电力转换,以及在EV上应用的优点和缺点。此外,本文讨论的各种类型的电池,根据它们的能量存储机理,材料组成,基于其容量的一般电力输送过程和整体的ESS系统中的电力电子技术和预期寿命。本文综述了下一代电动汽车应用中ESS技术可持续发展的诸多因素,挑战和问题。
1 介绍
通过确保适当利用先进技术,世界正在走向发展。许多发展中国家和欠发达国家正在争相实现发达国家的技术进步。解决公民的交通需求象征着技术和经济增长的进一步发展。全球流动性和许多城市的发展明显地增加了车辆在道路上行驶的数量。根据参考文献[1],从1990年到2014年销售约295.57百万辆汽车,2014年销售总额的31.70%。预计2015年销量增长3%[1]。
车辆数量的增长已经导致两个主要问题,即,交通拥堵和二氧化碳(CO2)的排放过量。一般来说,常规车辆在消耗大约总燃料能量85%[2,3],其余以CO2,一氧化碳,氮氧化物,碳氢化合物,水和其他温室气体(GHG)的形式消散热量; 总气体排放量的83.7%为CO2 [4] 。CO2排放量,从1990年的227亿吨急剧增加至2013的 352.7亿吨[5]中,如图1所示。随着CO2从1990年开始的缓慢上升,见于图1,在未来十年,该增长率从2003年至2008年逐年加快。在2013年,排放量减小至3.80-2.00%。二氧化碳是导致全球变暖的温室气体之一,这是一个严重的全球环境问题。
脱碳在减少二氧化碳运输部门的排放量,具有重要作用。对化石燃料驱动车辆的内燃机的改进还远远达不到CO2 排放目标。因此,需要先进技术才能达到长期和更高的排放目标。CO2和其他温室气体排放量的减少,是许多国家和研究的重要问题。许多国家和地区独自或联合通过了计划,通过电动车辆(EV)代替常规的内燃机车辆的方式减少CO2的排放[6,7] 。减排计划已经设定了未来几十年的温室气体排放目标[4]。电动汽车具有高效率和低排放甚至零排放的优点,因而吸引了各方的关注。 [8]。
图 1. 运输二氧化碳(CO 2)排放量[5]
电动汽车将电力储存在电化学电池,燃料电池(FC)和超级电容器(UCs)中运行,其最终电力来源包括发电厂和可再生能源。根据动力来源不同,电动汽车有几种类型,如混合动力电动汽车(HEV),纯电动汽车(BEV),插电式混合动力电动汽车,光伏电动汽车和燃料电池电动汽车[9,10]。不同于传统的车辆,电动汽车使用一个或多个动力电源和电动机[10,11]。电动汽车中使用再生制动和热电发电机,以减少能源浪费。车辆的制动过程吸收其能量,将其转换回电能,并将能量返回到电池,而热电发电机将热量从发动机和机器系统自动转换为电力[3,11,12]。电动汽车电动机通常不需要使用传统的变速箱,并且在很宽的速度范围内具有高转矩。此外,电动汽车在静止时不消耗任何动力[13],在运行时消耗75%以上的能量。目前,电动汽车平均使用1千瓦时电量续航4~8英里[3] 。
电动车是高度依赖于能量存储技术,例如 FC和UCS [3,14 - 16] ,它需要从电网充电。电动汽车的额外能源需求是普通电网的新挑战。为了满足额外的电力需求,大多数国家正在投资可再生能源,如太阳能和风能 [16] 。 车辆自身的可再生能源和存储的能源可以在用电高峰期间给大电网供电 ( V2G ) , 在用电低谷期间从大电网充电恢复动力性能 [17-19]。存储在电池系统和其他存储系统中的电能被用于操作电动机和附件以及车辆的基本系统 [20] 。VE上的电池存储能量,除了用于驱动电机,还同时给车辆附件供电。车辆的续航和功率性能完全取决于电池的性能 [3,14 - 16] 。
电动汽车中的电能存储需要考虑许多要求。管理系统,电力电子接口,电源转换,安全和防护对提高能量效率和实现EV分布式管理都非常重要 [21-25] 。电动汽车需要高科技提供长途续航和高能量使用效率。能源的选择和管理,能量储存和储能管理系统对未来电动汽车技术至关重要[23]。
能量储存系统(ESS)正在成为电力市场中的重要一环,提高可再生能源的比例,减少二氧化碳排放量[4,5,8] ,重新定义智能电网概念[26-29] 。ESS对整个电力系统具有重要影响; 它提供了连续和灵活的电源供给并提高电网应对不可控的额外功率波峰的出现。此外,ESS确保了因自然灾害造成的电力危机期间,仍然能够为消费者提供可靠的服务 [30]。
本文侧重于ESS制造,利用,回收和处理过程中的环境和安全问题。不同类型的能量存储技术按照发电过程,特点,以及在电动汽车上的应用进行一一解释。分析比较现有的电化学储能单元的特征。
ESS系统的典型结构与应用该系统的场景及具体参数有关。ESS包括机械的,电化学的,化学的,电的,热的和混合的等各种类型[30] 。这些系统按照结构和组成的材料成分分类[14,30] 。图3展示了储能介质的详细分类,其中能够应用于EV的类型,涂成灰色。飞轮,二次电化学电池,FC,UC,超导磁线圈和混合ESS通常用于EV动力系统[9,10,14 - 16,23,30 -33]。
机械存储系统(MSS)通常用于发电过程。三个典型的机械储能系统包括抽水蓄能(PHS),压缩空气储能(CAES),以及飞轮储能(FES)。应用最广的MSS是PHS,用于抽水电站。在水量大的季节,将一部分水泵送到高处,储存水势能,利用水自高而低的势能,带动涡轮机发电。这个存储系统贡献了世界大约99%的电力存储容量,大约是全球发电容量的3% [34]。CAES,压缩空气与天然气混合,膨胀,并进一步转化成混合气体,输送到燃气涡轮发电机以产生电力 [35] 。CAES的实时需要等温、绝热和非绝热储存系统 [33]。CAES适用于大容量电力生产。
由于电力电子和材料工程的进步,飞轮储能系统(FES)适用于电动汽车和动力系统[36]。能量效率在90-95%和功率规模0-50 MW [36 - 43] 。飞轮系统包括在腔室中旋转的圆柱形本体,联接轴承,以及能量传递装置,发电机/电动机一起安装在一个共同的轴上[15,30,36,37] 。保持飞轮不断旋转的能量被转换成推动传动装置的电能。