定制热线: 400-678-3556

宝鄂百科

比亚迪电池和特斯拉电池有啥区别?两者一对比,才知谁更牛

来源:宝鄂实业    2019-03-19 16:32    点击量:
科技带领着社会在不断的朝着智能化的方向发展,渐渐把新能源车推向市场,被大伙所接受。虽然在前期刚推出的时候受到过质疑,但经过一段时间的发展后也有了极大的进步。再者新能源车型本身就是未来发展的方向,自然会相当重视。在纯电动车中的名声不错的应该要算比亚迪和特斯拉了,质量确实不错。
 
 
特斯拉和比亚迪可以算是纯电动车的领头者,但两者的价格却相差很大,这是为何呢?主要在于特斯拉主攻的是中高端品牌车型,自然会贵很多,价格多半都是在百万之间的。但比亚迪就不同主打的车型主要是跑平民车,价格都是在30万左右的,平常人都能接受的价格。但续航的里程数是差不多的,可是电池的价格也相差太大了。
 
 
比亚迪电池和特斯拉电池有啥区别?两者一对比,才知谁更牛。比亚迪电池和特斯拉电池区别挺大的,不光是价格更是技术上的较量。纯电动车的核心部件就是电池,它的功率影响着车辆的续航问题。比亚迪采用的是磷酸锂电池,但特斯拉所使用的电池是钴酸锂电池,两者一对比,当然是特斯拉的电池更牛了。
 
 
因此比亚迪电池和特斯拉电池区别挺大的,不光是价格更是技术上的较量,难道这就意味着比亚迪比特斯拉更差吗?这倒不是,论起真正的技术还是比亚迪更牛,所有的核心技术基本都是自主完成,比较扎实。但特斯拉级就不同了,车型上的设备基本上都是通过组装而来,经过供应商那边提供,电池到电机都是,要说真正的技术应该是比亚迪才更牛,无论是组装还是电池的制造上都非常出色。
 
 
比亚迪电池和特斯拉电池有啥区别?两者一对比,才知谁更牛。如果真正要谈及技术来说,两者一比较还是比亚迪更胜一筹。但特斯来有着强大的资本去供应商那边获得,组装还不错。他们也只是擅长火箭回收技术和电池的管理技术罢了。比亚迪电池和特斯拉电池区别挺大的,不光是价格更是技术上的较量。完全只是看车那肯定是特斯拉的好,但看技术还是比亚迪的更扎实,你们觉得呢?两者一比较,你认为谁更牛?
首先,将电芯在室温下,约20℃,在12个月内,搁置在运输用的箱子中未使用。其次,电池经历了第一次充电,并测量了每个电池的容量和阻抗。第三,选择用于循环老化的电池循环达到约两个月(300个循环)。第四,测量容量和阻抗,并将电芯储存在室温下。第五,一些非循环电芯储存在60°C的烘箱中10个月。
 
 
 
 
总共进行了14次外部加热滥用测试。使用具有115L内容积的恒温控制的烘箱Binder FED 115单独加热电池。将电池居中放置在烘箱内部并且用钢丝(0.8mm直径)机械固定在砖上,参见图1。在测试开始后1分钟后,将烤箱调节至最大加热速率,温度设置为 300℃。总测试时间因环境条件变化和最终发生气体爆炸而变化。
 
该烤箱是定制的,具有四个直径为50mm的通气端口,用硅塞密封,并配有内部风扇设置到最高转速以均匀化内部温度。放置在烤箱背面的通风口被设置为完全关闭。然而,这不是一个完美的密封,在滥用测试期间,它部分变形。在第一次测试中,烤箱门可以正常关闭,但是由于在瓦斯爆炸过程中门被打开,所以在以下测试中将门用胶带固定。在烤箱顶部的一个硅胶塞安装的比较松,充当泄压口。
 
在每次测试之间,将烤箱轻轻地清洗/清洗以最大限度地减少来自例如颗粒污染的潜在干扰。玻璃门窗(三层玻璃)没有机械破裂,但被严重污染和蚀刻,因此被更换了几次,以获得可接受的视频质量。
 
使用具有Agilent 34902A簧片多路复用器模块,以1Hz测量电池电压和温度。电池电压通过K型热电偶电缆测量,将电缆拧入电气接头连接器中的小钻孔(直径0.8 mm)中。使用连接有玻璃纤维带(3M,电气带Scotch,19mm宽)的K型热电偶测量Li离子电池表面温度,在多达六个位置T1-T6处测量,参见图 1D,其中T1 -T4测量每边的中心温度,而T5-T6是两个最大表面上的附加中央传感器。K型热电偶也用于测量环境温度(炉外)和炉内温度,后者在两个位置测量,如图 1A和B 所示。通过放置在烤箱门外的照相机记录测试视频过程。在一些测试中,还使用了第二台摄像机,放置在离烤箱约2至7米的距离处。使用卡尺手动测量电芯厚度,(量程150毫米长)和电芯尺寸按照最大尺寸记录,出现在中心对中心的测量位置上。
 
 
测试12中的电池应该循环至300次循环,但是在循环过程中达到229次循环后失效,并且不可能再充电或放电。试验13和14中的电池最初完全充电并在60℃下储存10个月,此后电压降至低于1V。这些电池的厚度从18.5mm增加至21.3mm(约15 %),但是电芯重量没有改变,表明电芯没有泄漏或排气。本次研究中的所有其他电芯在循环老化前后的厚度均为18.5 mm。
 
表2列出了老化前后的容量数据。SOH是相对剩余容量,由当前C/5放电容量除以初始C/5放电容量计算。循环后,电芯达到下列SOH,约94%(100个循环)、91%(200个循环)和89%(300个循环)。寿命(至少对于第一次使用的电池寿命)的终点通常是定义为约70%- 80%SOH,电芯参数表显示,600次循环> 70%SOH(后表1),因此,测试的电芯远未充分老化。如表2所示,测试1和4中的电池具有较低的初始放电容量,因为它们在容量测量之前循环3次。然而,即使测试1和4中的电芯循环了3次(详情参见表2中的注释),它们在这里被称为0循环电芯。
 
 
 
图2显示了不同周期老化的电池的阻抗测量结果。阻抗曲线图,图2A,具有锂离子电池的典型外观,包括高频电感,中频和低频尖峰受抑制的重叠半圆,对应于电芯内阻和连接阻抗,SEI阻抗,电荷转移影响和传质阻抗。复阻抗图中与实轴的交点,确定了平均串联阻抗,如图2A所示,也即这种类型电芯的内阻,新电芯为13.2mΩ,300次循环后增加14.4mΩ(增长9%)。图2B为相位角相对于频率对数的曲线图。在这幅图中可以找到两个峰值,一个频率在0.1赫兹以上,一个在2赫兹左右。低频峰随着循环老化而增大,而第二个峰在几个循环后或多或少已经消失。无论如何,在3个循环之后,检测到明显的差异,这样,相角提供了一个新的视角来观察老化带来的影响。对于具有相同电极化学成分的老化电池(石墨/LCO),阻抗图中的低频半圆被认为阴极处的电解质氧化,因此可能表明在0.1Hz以上的相角中峰的增长在这种情况下也是由于阴极处的氧化。这可能是因为电池充电到相对较高的4.20V截止电压,虽然仍在电池制造商的确定的参数范围内。
 
 
在试验1-11中,将电芯完全充电(100%SOC),电芯经历了不同的老化循环次数,范围从0到300个循环。试验12-14的电芯是失效电芯,因此,SOC是无法确定的。测试12中的电池在229次循环后在循环期间 “猝死”。试验13-14中使用的电芯已经在60℃下存储了10个月,在那段时间内自放电或者失效,因而有一个电芯OCV小于1V,即低于0%SOC电平。
 
 
 
表3列出了14种不同老化状态电芯,工作电芯以及失效电芯的外部滥用测试结果。在所有测试中,当温度达到热失控温度时,温升速率迅速增加,所有电池都发生热失控。对于试验1 - 11,电池的热失控后,有短的(小于一秒)和典型的燃烧、火花和喷射,图3中显示了示例。在一些情况下,根据“火灾”的不同阶段,电芯燃烧较长时间和较大的火焰,如表3中所示 。通常情况下,后续火势较小的情形,见表3,这表明在之前较长的时间内存在一个或几个火苗。此外,使用术语“无明火”是指没有点燃电池或其气体的情况。这没有考虑到最初的短暂的短路/火花等情形。术语“气体爆炸” 是指从电池释放的累积可燃气体与炉内空气混合的延迟点火,其在当前案例中,导致迫使炉门打开的压力波。气体爆炸是燃烧学中常见的现象,然而并不经常讨论锂离子电池火灾。在这项研究中,如表3所示,所有工作电芯的测试都是在非燃烧或气体爆炸后进行的。此外,对于大约一半的工作电芯和全部的老化电芯,气体爆炸大约在燃烧的30秒之后发生,接下来是20-50秒的小火或者火花。对于失效电芯,测试12 – 14所示,结果显著不同,视频分析没有显示出任何火花、喷射或者发生瓦斯爆炸。
 
 
 
对于所有测试,视频分析显示,在达到热失控温度的同时,位于电芯顶部的电池安全阀打开并释放大量烟雾,迅速填满烤箱空间。释放的烟雾的颜色通常是白色或浅灰色。如果电池安全阀不能打开,例如由于故障或不良设计,可能发生电池壳体爆炸,这是一种危险情况,包括喷射壳体碎片的风险。只是这在目前的一组实验中没有发生。
 
 
工作电芯比失效电芯损失更多重量,膨胀更大(更厚)。工作电芯的重量损失平均为22.6%,失效电芯的平均重量损失为17.0%。工作电芯的厚度从18.5毫米增加到平均27.2毫米(增加47%),而外部滥用后平均失效电芯厚度为23.8毫米。总的测试时间有所不同,如表3所示,导致不同的加热时间。可以看到一些趋势,重量损失和厚度增加都是循环次数的函数(循环次数越多,损失重量越少,尺寸膨胀越大)。这些影响必须发生在内部最短测试时间范围(75分钟,测试6)。
 
 
3.2.2 温度结果
 
表4列出了外部加热滥用测试的温度结果。将表4中的热失控温度值确定为发生温度快速升高时的温度。对于工作电池,热失控温度很容易确定,而对于失效电芯,特别是对于测试12,并不太明显。失效电芯具有明显较高的热失控温度,较低的温升速率和较低的峰值温度。0个循环的失效电芯,将其一部分寿命在60℃保存10个月,测试13 -14,其测试结果显示了高重现性。虽然电极界面必须发生重大变化,但失效电芯仍可能含有大量易燃电解质。没有研究不同SOC水平的电芯,因此SOC低水平的电芯和失效电芯之间的任何可能存在的相似性,在结果中有可能被混淆。
 
 
电池表面温度传感器T1-T6在达到热失控温度时通常是可靠的。对于除测试13(参见表4中的注释)以外的所有测试,热失控温度值作为传感器T1和T3的平均值计算。高于热失控温度,传感器会记录的温度出入很大,由于高温,电池膨胀和最终的气体爆炸,有时会从电池脱落下来。因此,另一个平均值,Tavg2被用来确定最大平均电池表面温度,相应的温度增加(Δ T)和时间长度(步骤时间Δt)。Tavg2使用所有可用的T1-T6传感器数据计算,详见表4。可用的传感器被定义为没有丢失的与电芯表面有接触的传感器。由于可用电池温度传感器的数量和位置不同,表4中给出的结果自然变化。当最高温度值的分布更广,则热失控温度值可以更好的被界定出来。