定制热线: 400-678-3556

宝鄂百科

为什么不同新旧UPS电池不能混用?浮充电压是什么?

来源:宝鄂实业    2019-03-19 16:36    点击量:
之前为大家列举了一些UPS电池的使用注意事项,今天就为大家详解UPS电池这些注意事项背后的为什么和为什么不以及怎样等。
 
1.为什么不同批次型号新旧的UPS电池不能一起使用?
 
因为不同的批次、型号、新旧的UPS电池内阻不一样,这样的UPS电池在充放电时存在差异,一起使用时会导致某一只电池过充或欠充以及电流不同,从而影响整个UPS不间断电源系统的正常运行。
 
2.UPS电池的浮充电压是什么?
 
首先浮充是UPS电池的一种充电模式,即蓄电池在充满的状态下,充电器仍会提供恒定的电压和电流,以平衡蓄电池本身的自然放电,保证蓄电池可以长期处于充足电的状态,这种情况下的电压称之为浮充电压。
 
3.UPS电池应该安装在怎样的环境下?
 
安装UPS蓄电池首先要确保地面的承重,因为不论是UPS主机还是蓄电池都有不小的重量;其次是安装环境的面积,若是蓄电池只数较多,可以使用电池箱来节省占地面积;同时要保证环境的清洁通风等。
,DMC和EC的易燃性数据。自燃温度是溶剂的可燃混合物可以自发点燃的最低温度。闪点是可以用点火源点燃液体的最低温度。在易燃性范围内,在较低和较高易燃性极限之间,气体混合物可被点燃并导致气体爆炸。当易燃混合物被点燃时,由于温度上升,气体体积通常扩大5 - 8倍,即,它会导致为5-8bar过压(1bar =0.1MPa)。请注意,许多建筑结构,如门窗,可以承受的压力差小于100mbar。只需要少量电解质,就可以形成可燃混合物。在一立方米中,需要约30L(1m 3的 3%)溶剂。使用理想的气体定律和常温常压,可以得出30L对应于约100g溶剂。这意味着蒸发1千克电解质的,对应于约350Ah容量的电池,溶剂可产生10m 3的易燃混合物。
 
对于115升容积的烤箱,100克/m^3 气体对应于约12克(8%的电芯重量)释放的电解质气体,将导致在烘箱中达到最低的可燃性极限(LFL)。工作电芯的重量减少了31至34克,而失效电芯失去了21-26g,在排气过程中,喷射物由多种电芯材质组成,例如电解液,隔膜等,也就是说,在所有测试中LFL可能会很容易的达到,但并非所有测试均发生火花/爆炸。重要的是要考虑:由于气体和气体混合物的非理想行为,LFL可能在每个状态都不尽相同,并且气体浓度在烘箱体积内也会有一些变化。此外,在越来越高的温度下,炉内气体的迅速膨胀可能产生了贫氧环境,改变了点火条件。
 
 
3.2.5 有毒气体排放
 
无论是否进行FTIR气体测量,在所有四个测试中都测量到了CO,HF和POF3的气体排放 。CO是一种窒息性气体。HF是非常有毒的,而POF3 可以通过水解被看作是HF的前体,因此也可以被认为是有毒的。根据Yang等人的介绍,氟化物的来源可以有多种,但是主要的氟化物源通常是生产锂盐LiPF6的HF和 POF3。
 
 
 
 
从等式可以看出。(2)和(3)中, 产生HF需要水或者湿气。电池内部,如电解质,可能含有非常小的痕量水,但它们通常在电池的第一次循环中通过促成SEI层的形成而消失。在正常条件,温度以温和的速度增加,电池仍然完全密封。当电池密封断裂,第一次气体排放,烘箱内空气含有水分。但是在第一次和第二次排气中, HF和POF3 尚未检测到。电池安全阀的开口在第三通风口处,并且这是检测到HF和POF3的唯一通风口 。这是一个有趣的问题,为什么只在第3次排气中检测到HF和POF3?
 
在第3次排气,而不是在电芯同样是敞开的的第1次或者第2次排气。可能的原因是,在第一和第二次排气中,电解质溶剂沸腾并且作为单一化合物排放而没有Li盐。在第三次排气中,气体释放非常强烈,从视频中可以清楚地看到,它不仅可以释放电解质中最易挥发的部分,而且还可以释放剩余的电解质,包括部分LiPF6。此后,含LiPF6 的电解质可与烘箱中的湿气发生反应并产生HF和POF3。温度也影响HF的形成,但是三个通风口的温度差异相对较小。
 
 
3.2.6 气体检测
 
锂离子电池释放的气体是有毒的易燃的。如果气体喷出时没有立即点燃,而是由易燃气体和空气组成混合气体并经过一段时间后,由热电池单体等元素延时点燃,这将是危险的。如果气体被电池系统箱体或外部安装箱所限制,这将导致严重的气体爆炸。
 
 
 
图8. 测试5中的FTIR测量,(A)显示时间79.6分钟处的HF发射;(B)显示时间61.8分钟处的POF3 发射。
 
 
特别是对于大型锂离子电池系统,能够收集气体排放物并以安全方式进行排气是一项重要安全手段。如果使用气体传感器,他们可能会检测碳氢化合物的含量和气体爆炸风险。气体传感器也可用于检测有毒气体,例如HF传感器。因此可能需要使用多个动态气体传感器来检测早期电芯排气。在本测试中检测到的第一个和第二个排气过程没有图像和声音现象,因此在没有气体传感器的情况下不容易被检测到。但是,装备有六个电池表面温度传感器的电池在第二次释放气体时,显示温度下降。在温度数据中没有清楚地看到第一次排气的特征,但是从电压降到了0V可以发现排气现象的存在。
 
在图5A,第二次排气,相当清楚地看到,热失控之前只需几分钟,平均电池表面温度突然降低。第二次排气的温度变化也清楚地显示在图4中,dTavg2在热失控温度非常迅速增加之前先快速下降。电池组中足够数量的电池表面温度传感器可以预测和检测大量的气体释放。今天的电池组通常没有每个电池一个温度传感器,而是例如每个电池模块使用2个温度传感器(比如包含20个电池单体),总之,没有通用的标准。这种类型的传感可能会有很大的变化,使得用电池单体表面温度测量作为气体检测告警往往不起作用,除非故障电池上恰好有直接接触的温度传感器。
 
电池安全阀打开时,释放大量烟雾和气体,很容易在视觉上看到。电池系统通常具有高密封等级,例如IP67,这会阻碍气体释放和视觉检测,并且在气体最终释放时,可能会增加气体爆炸的风险。在没有检测到排放气体的情况下,不可能推测存在爆炸性气体爆炸的风险。释放的易燃气体积聚在电池内部,只差一个点火源就会发生爆炸。像这样的情况可以通过安装在电池盒中的气体传感器来检测。配备具有策略性计划的温度检测系统的电池系统,可以提供早期的气体排放监测。
 
 
 
方形LiCoO2 -石墨电池,标称容量为6.8Ah,在烤箱中被外部加热滥用。该研究包括循环老化的电芯,储存在60℃的非循环电芯以及在室温下储存的非循环电芯。研究了工作和非工作(失效)电芯。
 
在外部加热时,所有电池都会产生热失控,释放烟雾和气体。对于大约一半的工作电芯,在热失控后约15秒内,积聚在烘箱中的气体被点燃导致气体爆炸,并伴随着主要的烟气释放过程。
 
无论是否曾经循环过的电芯,并没有影响气体爆炸的发生,它们发生在0-300个全深循环的所有循环老化水平。
 
使用FTIR分析气体。无论是否使用有毒氢氟酸都会检测到气体排放。因此,HF产生并不需要火焰,有火焰存在之后确实有HF产生。没有研究影响HF生成率率水平的因素。
 
另一种释放出潜在有毒气体和HF前体POF3,也与HF同时检测到。第三排气阶段也检测到有害气体CO 。热失控温度约为190°C,并且显示与老化过程中的循环次数有微弱的相关性,在0 至 300次循环的测试循环范围内,100至200次循环之间,是产生最少有毒气体的老化阶段。

产品相关推荐