定制热线: 400-678-3556

宝鄂文库

固态电池容量高但放电效率低?如何发挥固态电池的性能优势?

来源:宝鄂实业    2019-04-24 23:24    点击量:

固态电解质是固态电池的核心

 

更宽的电化学窗口,更易搭载高电压正极材料:提高正极材料容量需要充电至高电压以便脱出更多的锂,目前针对钴酸锂的电解质溶液可以充电到4.45V,三元材料可以充电到4.35V,继续充到更高电压,液态电解液会被氧化,正极表面也会发生不可逆相变,三元811电池的推广目前便受到了耐高压电解液的制约。而固态电解质的电化学窗口更宽,可达到5V,更加适应于高电压型电极材料。随着正极材料的持续升级,固态电解质能够做出较好的适配,有利于提升电池系统的能量密度

 

兼容金属锂负极,提升能量密度上限:高容量与高电压的特性,让金属锂成为继石墨与硅负极之后的“最终负极”。为了实现更高的能量密度目标,以金属锂为负极的电池体系已成为必然选择。因为:(1)锂金属的克容量为3860mAh/g,约为石墨(372mAh/g)的10倍,(2)金属锂是自然界电化学势最低的材料,为-3.04V。同时其本身就是锂源,正极材料选择面更宽,可以是含锂或不含锂的嵌入化合物,也可以是硫或硫化物甚至空气,分别对应能量密度更高的锂硫和锂空电池,理论能量密度接近当前电池的10倍。

 

锂金属负极体系能量密度远超传统锂电

 

锂金属负极在当前传统液态电池体系难以实现。锂金属电池的研究最早可追溯到上世纪60年代,并在20世纪70年代已成功开发应用于一次电池。而在可充放电池领域,金属锂负极在液态电池中存在一系列技术问题至今仍缺乏有效的解决方法,比如金属锂与液态电解质界面副反应多、SEI膜分布不均匀且不稳定导致循环寿命差,金属锂的不均匀沉积和溶解导致锂枝晶和孔洞的不均匀形成。

 

锂金属负极在液态电池中存在的应用难题

 

固态电解质在解决锂金属负极应用问题上被科学界寄予厚望。研究者把解决金属锂负极的应用问题寄希望于固态电解质的使用,主要思路是避免液体电解质中持续发生的副反应,同时利用固体电解质的力学与电学特性抑制锂枝晶的形成。此外,由于固态电解质将正极与负极材料隔离开,不会产生锂枝晶刺破隔膜的短路效应。总而言之,固态电解质对于锂金属负极拥有更好的兼容性,锂金属材料将在固态电池平台上率先应用。