新一代负极材料研发成功!钠离子电池要面世了吗?
近日,北京理工大学化学与化工学院孙克宁团队在高倍率、长循环钠离子电池负极研究方面取得新的研究进展。通过构建介孔中空结构并采用杂原子调控碳层间距,获得了具有较高倍率性能及循环稳定性的碳负极材料。该研究成果以《Heteroatom-Doped Mesoporous Hollow Carbon Spheres for Fast Sodium Storage with an Ultralong Cycle Life》为题在线发表在国际能源类顶级期刊《Advanced Energy Materials》(《先进能源材料》,影响因子21.8)。本文的通讯作者为孙克宁教授及孙旺特别副研究员,第一作者为北京理工大学化学与化工学院博士研究生倪丹。
钠离子电池与锂离子电池相比具有资源丰富,价格低廉的优势,可以作为新一代储能电池。考虑到储能电池应用环境中可再生能源的间歇性及波动性,以及储能系统的经济性,开发高倍率、长循环性能的电极材料是钠离子电池应用中亟待解决的问题。碳负极材料由于其低成本及环境友好性,有较高的商业化前景。然而,在充放电过程中,由于钠离子的离子半径较大,会造成离子扩散速率缓慢,还会产生较大的电极体积变化,导致电池的倍率性能及循环稳定性差,制约了碳材料的实际应用。为了实现钠离子电池的高倍率、长循环性能,需要碳电极材料具有快速的电子与离子传导能力,并保证充放电后电极结构的稳定性;为了半径较大的钠离子快速扩散,需要对碳层间距进行调控。
基于以上材料设计思路,孙克宁团队基于聚多巴胺表面涂覆技术及杂原子掺杂碳结构调控方法,制备了钠离子电池负极材料——硫氮共掺杂的介孔中空碳球(SN-MHCSs),并对其储钠机制及循环后碳结构变化进行了分析。该研究表明:1.薄壁中空球形结构,有利于离子和电子传导,能够缓冲充放电过程中的体积变化,碳球表面的介孔结构,能够促进电解液的扩散及碳球内表面的利用,较高的比表面积可以确保表面电容过程控制的快速钠储存。2.杂原子掺杂,能够增大碳层层间距,促进钠离子的扩散及存储,增加电子导电性,提升容量。3.循环过程中,钠离子的嵌入脱出能够扩大碳层间距,使碳层排布更加整齐,促进钠离子及电子的传输,带来循环后电极容量上升。
本研究为高倍率、长循环钠离子电池负极材料的发展提供了新思路,这种结构还可以应用于其他需要快速电子/离子传输、长期循环稳定性的能源体系中。
但是,我国动力蓄电池回收的一大优势就是退役电池分布地区较为集中。此前,为了推动新能源汽车发展,科技部、财政部等多个部委联合发起了“十城千辆节能与新能源汽车示范推广应用工程”,计划用3年左右的时间,每年发展10座城市,每座城市推出1000辆新能源汽车开展示范运行,并最终选出了3批共25座试点城市。因此,如今的退役动力蓄电池也主要集中在深圳、合肥、北京等新能源汽车推广力度较大的城市。
回收体系加快完善
2018年,工业和信息化部联合科技部、生态环境部、交通运输部、商务部、市场监管总局、能源局发布了《新能源汽车动力蓄电池回收利用管理暂行办法》,构建回收利用管理机制,推动建立回收利用体系。
为了明确溯源信息采集要求,新能源汽车国家监测与动力蓄电池回收利用溯源综合管理平台也上线运营。目前,已有393家汽车生产企业、44家报废汽车回收拆解企业、37家梯次利用企业和42家再生利用企业加入平台。
工业和信息化部还确定在京津冀、上海等17个地区,以及中国铁塔公司开展试点,积极培育标杆企业,探索技术经济性强、资源环境友好的多元化回收利用模式。北汽新能源、广汽三菱等45家企业共设立了3204个回收服务网点,主要集中在京津冀、长三角、珠三角及中部新能源汽车保有量较高的地区。
“十城千辆工程”推广期间退役动力蓄电池约1.26万吨“十城千辆工程”推广期间退役动力蓄电池约1.26万吨
同时,汽车制造、电池生产及综合利用等企业在备电、储能等领域积极开展梯次利用试验。总体来看,梯次利用市场潜力还是很大的,已成为行业发展热点,部分企业正在梯次利用领域探索“以租代售”等新商业模式。