定制热线: 400-678-3556

电池知识

不同老化程度的锂电池,热失控表现一样吗?上

来源:未知    2019-03-24 15:41    点击量:

3.2.3 结果与气体测量相结合

图6 显示了测试5的温度、电池电压和气体排放的测量结果,这是一个老化100个周期的电池。检测到三个排气过程。当电池电压下降到大约0V时,第一个排气过程释放出碳酸二甲酯(DMC)和乙酸乙酯(EA)蒸气。电池电压下降,表面温度约为130℃时过程开始。两种商业化隔膜,一个PP单层和一个三层可关闭隔膜PP / PE / PP以及从非滥用电池提取的隔膜上的DSC测量显示。这个温度非常接近电池关闭隔膜孔隙的第一个熔化温度。由于隔膜的熔化,预计温度会显示出一定程度的下降,因为该过程是吸热的,实际却相反,在12秒内,电池表面温度测量清楚地显示出较小的温度升高。观察到的温度升高的一种可能的解释是电池经历了内部电池短路而产生热量,然而短路应该只有在隔膜两层膜片都失去绝缘功能(融化)的情况下才有可能出现。在热失控之前3.5分钟,第二个排气阶段出现,也释放碳酸亚乙酯(EC),由于溢出气体的冷却作用,在此排气期间电池温度明显下降。视频中没有看到或听到第一个和第二个排气阶段的特征,仅通过FTIR气体测量确定。

 

表5,电池中电解质溶剂的可燃性数据。

 

 

图7. 测试10,经历了300次循环的电芯的温度测量值,电芯电压,和气体排放。由于爆炸,摄像机出现故障,因此没有摄像机观察火焰的发生。由于爆炸,烤箱门打开,气体排放量迅速下降。

 

 

3.2.4 气体爆炸

对于未失效的电池,气体爆炸是相对常见的,即,11次测试会出现5次爆炸,并发生在所研究的范围内循环老化各级(0 - 300次循环)。在试验3,4,6和10中,烤箱门打开,当烤箱中的气体点燃时,相机被吹动并听到一声巨响。对于试验8中的气体爆炸,气体点燃,但发展不同,功率较小。在实验8中,从热失控开始,到排气直至点火,共用去时间是26s。而在其它四个试验案例中,热失控后, 11-16秒(平均13.5秒)后,发生瓦斯爆炸。如果烤箱已经完全密封并且没有压力释放气体爆炸可能更为严重。

 

对于循环次数与气体爆炸之间的关系,总体的趋势是,所有发生气体爆炸试验与循环老化无关,而是温度上升率最高的电芯容易发生气体爆炸,最大值范围在25和72°C sec-1之间, 见表4 和 图S4。

 

Fig. S4. 热失控温度,温升速率最大值(最大dTavg2)和没有失效的电芯的温升相对循环寿命(循环数量),加星号的位置是出现了排气现象。

 

循环老化达300次循环,导致容量下降约90%(90%SOH)以及阻抗增加(串联电阻)高达约10%。电阻的增加可能与SEI的形成有关,并且SEI的厚度,形态和组成影响在热失控的前期阶段产生的热量。

由于循环而在电极处形成Li-金属(Li-镀层)被认为是次要的,因为循环在室温下进行且没有极端的大电流。如果存在Li镀层对热失控的影响,可能与锂化石墨阳极与电解质的热反应以,这与外部加热滥用的试验方式有关。

从视频中分析,可以看出,所有的非失效电芯,测试1-11,产生可见火焰和火花。即使烘箱充满气体,仍然没有出现气体喷射,直到出现明火点燃。发生爆炸的条件,气体和空气的混合物必须在一定范围内并且必须存在点火源。在第三排气阶段的第一次约10秒的电池气体排放中,这些标准可能尚未达到。第三次气体排放的烟气充满烘箱了大约2 -3秒之后,由于烟雾中能见度低,无法清楚地确定视频中是否存在火花。第三次排气或者说热失控之前,通过FTIR检测到,烘箱充满了电芯第一次和第二次排气放出的气体。所以,燃烧绝大多数都发生在第三个排气阶段,电池安全阀有火焰喷出以后。

对于所有0,100和200个循环的电池,如果电池经历气体爆炸,则电池厚度膨胀更大;对于300个循环电池,却刚好相反。事实上,涉及气体爆炸的电芯较厚可能表明,在安全阀完全打开之前,这些电芯确实在电芯内形成了较高的压力和温度(参见图S4)。

点火源可能在电池内部或外部开始。气体爆炸的点火源可能是由于未观察到的火花或由热失控引起的火花,或由于隔板熔化引起的内部电池短路,或者只是热气体混合物的自燃。所有工作电池的电池表面温度至少高于465°C,因此高于EA,DMC和EC的自燃温度,参见表5。瓦斯爆炸可能是由于其他释放的电池气体产物(例如CO和H 2)的点燃引起的。在第三次排气中观察到CO释放。与溶剂相比,CO谱带的强度相对较低,在有和没有气体爆炸的情况下,强度没有差异。此外,电池内部温度可能高于测量的表面温度。该电池可能含有电解质中的阻燃剂。这也许可以解释为什么没有一个电池瞬间点燃,并且并非所有的测试都有燃烧。

表5显示了EA,DMC和EC的易燃性数据。自燃温度是溶剂的可燃混合物可以自发点燃的最低温度。闪点是可以用点火源点燃液体的最低温度。在易燃性范围内,在较低和较高易燃性极限之间,气体混合物可被点燃并导致气体爆炸。当易燃混合物被点燃时,由于温度上升,气体体积通常扩大5 - 8倍,即,它会导致为5-8bar过压(1bar =0.1MPa)。请注意,许多建筑结构,如门窗,可以承受的压力差小于100mbar。只需要少量电解质,就可以形成可燃混合物。在一立方米中,需要约30L(1m 3的 3%)溶剂。使用理想的气体定律和常温常压,可以得出30L对应于约100g溶剂。这意味着蒸发1千克电解质的,对应于约350Ah容量的电池,溶剂可产生10m 3的易燃混合物。

对于115升容积的烤箱,100克/m^3 气体对应于约12克(8%的电芯重量)释放的电解质气体,将导致在烘箱中达到最低的可燃性极限(LFL)。工作电芯的重量减少了31至34克,而失效电芯失去了21-26g,在排气过程中,喷射物由多种电芯材质组成,例如电解液,隔膜等,也就是说,在所有测试中LFL可能会很容易的达到,但并非所有测试均发生火花/爆炸。重要的是要考虑:由于气体和气体混合物的非理想行为,LFL可能在每个状态都不尽相同,并且气体浓度在烘箱体积内也会有一些变化。此外,在越来越高的温度下,炉内气体的迅速膨胀可能产生了贫氧环境,改变了点火条件。

产品相关推荐