18650锂电池的容量最大能做到多少毫安?常见的18650锂电池容量是多少?
来源:宝鄂实业
2019-05-04 23:25
点击量:次
18650锂电池的容量最大能做到多少毫安时,还是一个很值得探讨的一个问题,因此一直受到众多从业者的关注。锂电池“鼓包”最好不要再用了,很危险,建议更换。
18650锂电池容量是多少?
常见的18650锂电池分为锂离子电池、磷酸铁锂电池。锂离子电池电压为3.6V和4.2V,磷酸铁锂电池电压为3.2V,容量通常为1200mAh-3000mAh,常见容量为2200mAh-3600mAh。
18650锂电池容量是厂家的主要卖点,此外,相同容量的18650锂电池电芯品牌也是影响价格的因素,一般来说,进口品牌比同类型的国产品牌价格高,前面说了,决定18650锂电池容量的主要因素还有原材料结构,因而从正极来看,采用钴酸锂、锰酸锂和三元材料、磷酸铁锂的价格会有差异。
由于18650锂电池的尺寸固定,它的最大容量一直受到众多从业者的关注,近年来各个厂家技术都有所提升,容量也相应提高,三星、松下、LG、索尼、东芝都能做到3600mAh以上,但稳定性一致性最好的还是2600~3000mAh的容量区间,如果是做电池组最好不要用最高容量,无论性价比和成组后电池组的使用寿命都不是很划算,所以不是说电芯容量越高使用越稳定,长久。
18650锂电池一般分为容量型和倍率型,容量型主要体现大容量,但放电电流一般低于1C,电流较小;倍率型可以大电流放电,但容量较低,使用时间不长。18650锂电池价格与容量大小成正比,容量越大,能量比越大,使用原料越多,所以价格会更贵,一般价格是10~30元/支。
18650锂电池的优点
1、容量大,18650锂电池的容量一般为1200mah~3600mah之间,而一般电池容量只有800mah左右,如果组合起来成18650锂电池组,那18650锂电池组是随随便便都可以突破5000mah的。
2、寿命长,18650锂电池的使用寿命很长,正常使用时循环寿命可达500次以上,是普通电池的两倍以上。
3、安全性能高,18650锂电池安全性能高,不爆炸,不燃烧;无毒,无污染,经过RoHS商标认证;各种安全性能一气呵成,循环次数大于500次;耐高温性能好,65度条件下放电效率达100%。
4、电压高,18650锂电池的电压一般都在3.6V、3.8V和4.2V,远高于镍镉和镍氢电池的1.2V电压。
5、没有记忆效应,在充电前不必将剩余电量放空,使用方便。
6、内阻小,聚合物电芯的内阻较一般液态电芯小,国产聚合物电芯的内阻甚至可以做到35mΩ以下,极大的减低了电池的自耗电。
锂电池会鼓包吗?
锂电池的安全性有时候会得不到保证,另外如果使用不当或者是制作水平有限的话还是有一定的安全隐患的,就比如电池鼓包。
锂电池鼓包的原因
第一种:厂商生产制作工艺问题
由于厂家众多,很多厂家为省成本,使得制作环境恶劣,使用将要淘汰设备机器等等,这样一来使得锂电池的涂层不均匀,电解液内混入了灰尘颗粒等。这些都有可能使得锂电池包在用户使用时出现鼓包现象,甚至出现更大的危险。
第二种:用户日常使用习惯
第二种在于用户本身,如果用户在使用锂电池产品时使用不当,如过充电过放电,或者是在环境极端恶劣的环境中持续使用等也都有可能使得锂电池出现鼓包。
第三种:长期不用且保存不恰当
任何一种产品如果长期不用的话,原有的性能基本上都会下降,电池长期不使用,然后也没有进行较好的保存处理。当其长期暴露于空气中不使用,并且电量充满。由于空气在一定程度上是导电的,放的时间过长就相当于电池的正负极直接接触,进行了慢性的短路,一旦短路就会发热,一些电解质分解甚至气化,从而导致发生鼓包。
锂电池鼓包的问题一旦出现,我们要立即停止使用,为了自身安全,根据自己手机的型号,买一块和手机匹配的安全电源。
锂电池环保化、无害化处置符合可持续发展的要求。大量锂离子电池进入市场,废旧锂离子电池回收和再利用问题也成为行业重大挑战。
锂电池回收技术手段有哪些?
锂电池回收典型的后续路径有两类,梯次利用或者直接材料回收。
1、梯次利用与原料回收
退役动力锂电池,走梯次利用道路的,是梯次利用之后再进行材料回收;直接材料回收的是批量过小的,无历史可查的,安全监测不合格的等等。
追求经济效益是企业和社会行为的动力。按道理,梯次利用,到锂电池的可利用价值降低到维护成本以下,再做原料回收,才是电池价值最大化。但实际的情况是,早期动力电池可追溯性差,质量、型号参差不齐。早期电池的梯次利用风险大,剔除风险的成本高,因而可以说,在动力电池回收的前期,电池的去处大概率以原料回收为主。
2、正极材料有价金属提取方法
当前说的动力锂电池回收,其实并没有做到整个电池上各类材料的全面回收再利用。正极材料的种类主要包括:钴酸锂,锰酸锂,三元锂,磷酸铁锂等。
电池正极材料成本占据单体电池成本1/3以上,而由于负极目前采用石墨等碳材料较多,钛酸锂Li4Ti5O12和硅碳负极Si/C应用较少,所以目前电池的回收技术主要针对的是电池正极材料回收。
废旧锂电池的回收方法主要有物理法、化学法和生物法三大类。与其他方法相比,湿法冶金因其能耗低、回收效率高及产品纯度高等优点被认为是一种较理想的回收方法。
3、湿法冶金
湿法冶金是用合适的化学试剂选择性溶解废旧锂离子电池中的正极材料,并分离浸出液中的金属元素的一种方法。湿法冶金工艺比较适合回收化学组成相对单一的废旧锂电池,可以单独使用,也可以联合高温冶金一起使用,对设备要求不高,处理成本较低,是一种很成熟的处理方法,适合中小规模废旧锂离子电池的回收。
4、火法冶金
火法冶金,又称焚烧法或干法冶金,是通过高温焚烧去除电极材料中的有机粘结剂,同时使其中的金属及其化合物发生氧化还原反应,以冷凝的形式回收低沸点的金属及其化合物,对炉渣中的金属采用筛分、热解、磁选或化学方法等进行回收。火法冶金对原料的组分要求不高,适合大规模处理较复杂的锂电池。
锂电池回收现状
现阶段我国废旧锂电池回收体系尚不健全,回收技术和商业模式还没达到成熟的标准。目前,利用技术不成熟,收购网络不完善,管理措施不健全,支持政策不到位等问题仍在困扰着我国锂电池回收行业,商业模式和盈利模式尚待探索。
梯次利用的体系不健全,仍是目前旧锂电池回收领域面临的最大问题。电池容量达到何种程度可以进入下一阶梯利用,达到何种程度不能进行梯次利用而需要进入回收程序,目前没有明确标准。
目前能够应用于梯次利用的早期动力电池只有极少数优质磷酸铁锂电池,其余电池包括三元电池在内都不具备利用价值。使用一段时间后,三元锂电池很难保证电池内部材料电化学性能的均一性,所以用于梯次利用存在安全风险。成组电池如果拆解会大幅度增加成本,只有不拆解电池包直接进行应用才有价值。
锂电池组保护芯片工作原理
锂电池PACK设计过程中一定会用到锂电池保护板或者相应的BMS,甚至于各种通信协议,但是锂电池保护十分重要,这些必须要要知道保护芯片工作原理,只有了解这些基本的保护芯片工作原理,才能更好的设计锂电池组,甚至可以协助品质部分一起分析异常电池或电路。
1、保护芯片工作原理中的主要元器件的介绍:IC:它是保护芯片的核心,首先取样电池电压,然后通过判断发出各种指令。MOS管:它主要起开关作用
2、保护芯片正常工作:保护芯片上MOS管刚开始可能处于关断状态,电池接上保护芯片后,必须先触发MOS管,P+与P-端才有输出电压,触发常用方法——用一导线把B-与P-短接。
3、保护芯片过充保护:在P+与P-上接上一高于电池电压的电源,电源的正极接B+、电源的负极接B-,接好电源后,电池开始充电,电流方向如图所示的I1的流向电流从电源正极出发,流经电池、D1、MOS2到电源负极(这时MOS1被D1短路),IC通过电容来取样电池电压的值,当电池电压达到4.25v时,IC发出指令,使引脚CO为低电平,这时电流从电源正极出发,流经电池、D1、到达MOS2时由于MOS2的栅极与CO相连也为低电平,MOS2关断,整个回路被关断,电路起到保护作用。
4、保护芯片过放保护:在P+与P-上接上一合适的负载后,锂电池组开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当电池放电到2.5v时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
5、过流保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当负载突然减小,IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
6、短路保护:在P+与P-上接上空负载后,锂电池组开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
锂电池组保护芯片主要元器件
锂电池组的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。
一、过流保护器PTC
1、PTC元器件支持电池组过大电流保护,该器件会随温度升高,电阻线性变大,当电流或温度升高到某一定值时,阻值发生突变(变大),从而使电流变到mA级,待温度下降,又会回复正常,可作为电池连接片串入电池组中。
2、PTC在锂电池组电子线路常被称为过流保护器,成本相对较高。
3、PTC(Polyswitch高分子聚合物开关),又名过流保护器,主要用于小功率电子设备的短路及过载保护。
二、热敏开关NTC
1、该NTC元器件能迅速感应电路中电流及温度变化温度过高或电流过达可使该开关内双金属片温度达到开关的额定值,金属片跳脱,起到保护电池及用电器的作用,在锂电池电路保护应用中经常可以见到。
2、热敏开关NTC金属片跳脱后可能不复位,导致电池组电压无法工作。
三、保险丝FUSE
1、当电路中电流超过额定值或电池的温度商升到一定值时,FUSE保险丝熔断使电路断开来保护电池组和用电器免遭破坏;
2、FUSE能感应电路电流及温度,保险丝熔断后无法恢复,需要及时更换,相对比较麻烦,不过现在市场上已出现可自恢复的FUSE保险丝了。
以上就是锂电池组保护芯片工作原理和主要元器件介绍,为了防止锂电池组在过充电、过放电、过电流等异常状态影响电池寿命,通常要通过锂电池保护装置来防止异常状态对电池的损坏。
最后,提醒大家的是废旧动力锂电池再利用须经过品质检测,包括安全性评估、循环寿命测试等,将电芯分选分级,再重组后才可再利用。否则,一致性无法保障。
18650锂电池容量是多少?
常见的18650锂电池分为锂离子电池、磷酸铁锂电池。锂离子电池电压为3.6V和4.2V,磷酸铁锂电池电压为3.2V,容量通常为1200mAh-3000mAh,常见容量为2200mAh-3600mAh。
18650锂电池容量是厂家的主要卖点,此外,相同容量的18650锂电池电芯品牌也是影响价格的因素,一般来说,进口品牌比同类型的国产品牌价格高,前面说了,决定18650锂电池容量的主要因素还有原材料结构,因而从正极来看,采用钴酸锂、锰酸锂和三元材料、磷酸铁锂的价格会有差异。
由于18650锂电池的尺寸固定,它的最大容量一直受到众多从业者的关注,近年来各个厂家技术都有所提升,容量也相应提高,三星、松下、LG、索尼、东芝都能做到3600mAh以上,但稳定性一致性最好的还是2600~3000mAh的容量区间,如果是做电池组最好不要用最高容量,无论性价比和成组后电池组的使用寿命都不是很划算,所以不是说电芯容量越高使用越稳定,长久。
18650锂电池一般分为容量型和倍率型,容量型主要体现大容量,但放电电流一般低于1C,电流较小;倍率型可以大电流放电,但容量较低,使用时间不长。18650锂电池价格与容量大小成正比,容量越大,能量比越大,使用原料越多,所以价格会更贵,一般价格是10~30元/支。
18650锂电池的优点
1、容量大,18650锂电池的容量一般为1200mah~3600mah之间,而一般电池容量只有800mah左右,如果组合起来成18650锂电池组,那18650锂电池组是随随便便都可以突破5000mah的。
2、寿命长,18650锂电池的使用寿命很长,正常使用时循环寿命可达500次以上,是普通电池的两倍以上。
3、安全性能高,18650锂电池安全性能高,不爆炸,不燃烧;无毒,无污染,经过RoHS商标认证;各种安全性能一气呵成,循环次数大于500次;耐高温性能好,65度条件下放电效率达100%。
4、电压高,18650锂电池的电压一般都在3.6V、3.8V和4.2V,远高于镍镉和镍氢电池的1.2V电压。
5、没有记忆效应,在充电前不必将剩余电量放空,使用方便。
6、内阻小,聚合物电芯的内阻较一般液态电芯小,国产聚合物电芯的内阻甚至可以做到35mΩ以下,极大的减低了电池的自耗电。
锂电池会鼓包吗?
锂电池的安全性有时候会得不到保证,另外如果使用不当或者是制作水平有限的话还是有一定的安全隐患的,就比如电池鼓包。
锂电池鼓包的原因
第一种:厂商生产制作工艺问题
由于厂家众多,很多厂家为省成本,使得制作环境恶劣,使用将要淘汰设备机器等等,这样一来使得锂电池的涂层不均匀,电解液内混入了灰尘颗粒等。这些都有可能使得锂电池包在用户使用时出现鼓包现象,甚至出现更大的危险。
第二种:用户日常使用习惯
第二种在于用户本身,如果用户在使用锂电池产品时使用不当,如过充电过放电,或者是在环境极端恶劣的环境中持续使用等也都有可能使得锂电池出现鼓包。
第三种:长期不用且保存不恰当
任何一种产品如果长期不用的话,原有的性能基本上都会下降,电池长期不使用,然后也没有进行较好的保存处理。当其长期暴露于空气中不使用,并且电量充满。由于空气在一定程度上是导电的,放的时间过长就相当于电池的正负极直接接触,进行了慢性的短路,一旦短路就会发热,一些电解质分解甚至气化,从而导致发生鼓包。
锂电池鼓包的问题一旦出现,我们要立即停止使用,为了自身安全,根据自己手机的型号,买一块和手机匹配的安全电源。
锂电池环保化、无害化处置符合可持续发展的要求。大量锂离子电池进入市场,废旧锂离子电池回收和再利用问题也成为行业重大挑战。
锂电池回收技术手段有哪些?
锂电池回收典型的后续路径有两类,梯次利用或者直接材料回收。
1、梯次利用与原料回收
退役动力锂电池,走梯次利用道路的,是梯次利用之后再进行材料回收;直接材料回收的是批量过小的,无历史可查的,安全监测不合格的等等。
追求经济效益是企业和社会行为的动力。按道理,梯次利用,到锂电池的可利用价值降低到维护成本以下,再做原料回收,才是电池价值最大化。但实际的情况是,早期动力电池可追溯性差,质量、型号参差不齐。早期电池的梯次利用风险大,剔除风险的成本高,因而可以说,在动力电池回收的前期,电池的去处大概率以原料回收为主。
2、正极材料有价金属提取方法
当前说的动力锂电池回收,其实并没有做到整个电池上各类材料的全面回收再利用。正极材料的种类主要包括:钴酸锂,锰酸锂,三元锂,磷酸铁锂等。
电池正极材料成本占据单体电池成本1/3以上,而由于负极目前采用石墨等碳材料较多,钛酸锂Li4Ti5O12和硅碳负极Si/C应用较少,所以目前电池的回收技术主要针对的是电池正极材料回收。
废旧锂电池的回收方法主要有物理法、化学法和生物法三大类。与其他方法相比,湿法冶金因其能耗低、回收效率高及产品纯度高等优点被认为是一种较理想的回收方法。
3、湿法冶金
湿法冶金是用合适的化学试剂选择性溶解废旧锂离子电池中的正极材料,并分离浸出液中的金属元素的一种方法。湿法冶金工艺比较适合回收化学组成相对单一的废旧锂电池,可以单独使用,也可以联合高温冶金一起使用,对设备要求不高,处理成本较低,是一种很成熟的处理方法,适合中小规模废旧锂离子电池的回收。
4、火法冶金
火法冶金,又称焚烧法或干法冶金,是通过高温焚烧去除电极材料中的有机粘结剂,同时使其中的金属及其化合物发生氧化还原反应,以冷凝的形式回收低沸点的金属及其化合物,对炉渣中的金属采用筛分、热解、磁选或化学方法等进行回收。火法冶金对原料的组分要求不高,适合大规模处理较复杂的锂电池。
锂电池回收现状
现阶段我国废旧锂电池回收体系尚不健全,回收技术和商业模式还没达到成熟的标准。目前,利用技术不成熟,收购网络不完善,管理措施不健全,支持政策不到位等问题仍在困扰着我国锂电池回收行业,商业模式和盈利模式尚待探索。
梯次利用的体系不健全,仍是目前旧锂电池回收领域面临的最大问题。电池容量达到何种程度可以进入下一阶梯利用,达到何种程度不能进行梯次利用而需要进入回收程序,目前没有明确标准。
目前能够应用于梯次利用的早期动力电池只有极少数优质磷酸铁锂电池,其余电池包括三元电池在内都不具备利用价值。使用一段时间后,三元锂电池很难保证电池内部材料电化学性能的均一性,所以用于梯次利用存在安全风险。成组电池如果拆解会大幅度增加成本,只有不拆解电池包直接进行应用才有价值。
锂电池组保护芯片工作原理
锂电池PACK设计过程中一定会用到锂电池保护板或者相应的BMS,甚至于各种通信协议,但是锂电池保护十分重要,这些必须要要知道保护芯片工作原理,只有了解这些基本的保护芯片工作原理,才能更好的设计锂电池组,甚至可以协助品质部分一起分析异常电池或电路。
1、保护芯片工作原理中的主要元器件的介绍:IC:它是保护芯片的核心,首先取样电池电压,然后通过判断发出各种指令。MOS管:它主要起开关作用
2、保护芯片正常工作:保护芯片上MOS管刚开始可能处于关断状态,电池接上保护芯片后,必须先触发MOS管,P+与P-端才有输出电压,触发常用方法——用一导线把B-与P-短接。
3、保护芯片过充保护:在P+与P-上接上一高于电池电压的电源,电源的正极接B+、电源的负极接B-,接好电源后,电池开始充电,电流方向如图所示的I1的流向电流从电源正极出发,流经电池、D1、MOS2到电源负极(这时MOS1被D1短路),IC通过电容来取样电池电压的值,当电池电压达到4.25v时,IC发出指令,使引脚CO为低电平,这时电流从电源正极出发,流经电池、D1、到达MOS2时由于MOS2的栅极与CO相连也为低电平,MOS2关断,整个回路被关断,电路起到保护作用。
4、保护芯片过放保护:在P+与P-上接上一合适的负载后,锂电池组开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当电池放电到2.5v时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
5、过流保护:在P+与P-上接上一合适的负载后,电池开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);当负载突然减小,IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
6、短路保护:在P+与P-上接上空负载后,锂电池组开始放电其电流方向如I2,电流从电池的正极经负载、D2、MOS1到电池的负极,(这时MOS2被D2短路);IC通过VM引脚采样到突然增大电流而产生的电压这时IC采样并发出指令,让MOS1截止,回路断开,电池被保护了。
锂电池组保护芯片主要元器件
锂电池组的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。
一、过流保护器PTC
1、PTC元器件支持电池组过大电流保护,该器件会随温度升高,电阻线性变大,当电流或温度升高到某一定值时,阻值发生突变(变大),从而使电流变到mA级,待温度下降,又会回复正常,可作为电池连接片串入电池组中。
2、PTC在锂电池组电子线路常被称为过流保护器,成本相对较高。
3、PTC(Polyswitch高分子聚合物开关),又名过流保护器,主要用于小功率电子设备的短路及过载保护。
二、热敏开关NTC
1、该NTC元器件能迅速感应电路中电流及温度变化温度过高或电流过达可使该开关内双金属片温度达到开关的额定值,金属片跳脱,起到保护电池及用电器的作用,在锂电池电路保护应用中经常可以见到。
2、热敏开关NTC金属片跳脱后可能不复位,导致电池组电压无法工作。
三、保险丝FUSE
1、当电路中电流超过额定值或电池的温度商升到一定值时,FUSE保险丝熔断使电路断开来保护电池组和用电器免遭破坏;
2、FUSE能感应电路电流及温度,保险丝熔断后无法恢复,需要及时更换,相对比较麻烦,不过现在市场上已出现可自恢复的FUSE保险丝了。
以上就是锂电池组保护芯片工作原理和主要元器件介绍,为了防止锂电池组在过充电、过放电、过电流等异常状态影响电池寿命,通常要通过锂电池保护装置来防止异常状态对电池的损坏。
最后,提醒大家的是废旧动力锂电池再利用须经过品质检测,包括安全性评估、循环寿命测试等,将电芯分选分级,再重组后才可再利用。否则,一致性无法保障。