电池循环衰退过程中SEI膜的变化对电池产生热量的影响有哪些?
来源:宝鄂实业
2019-05-05 18:13
点击量:次
锂离子电池具有较高的比能量、放电电压和较好的循环寿命等优点, 被认为是纯电动汽车(EV) 和混合电动汽车(HEV) 的最佳储能设备之一。热管理系统是保证大功率锂电池组安全运行的核心技术之一, 温度太高会导致锂电池面体电解质(SEI) 膜的破坏, 从而缩短电池循环寿命, 并可能引起电池爆炸等安全问题。因此, 研究复杂工况条件下锂电池工作的热特性是开发电池热控技术的基础, 对于发展动力电池热管理系统具有重要的科学指导意义。
目前, 对于锂电池发热特性的研究, 主要采用数值模拟和实验分析。在等Doyle提出的电化学模型和等bernardi提出的电池能量方程的基础上, 国内外学者已经发展了多个锂电池热电耦合模型, 如采用热电耦合模型计算了锂池在不同温度下的放电特性, 并且分析了与温度相关的参数对锂电池放电特性的影响。
和采用热电耦合模型对卷绕式锂离子电池的温度进行了计算, 并对其内部不同热源的发热量进行了详细分析。j.vazquez-arenas等采用热电耦合模型对方形锂离子电池进行了模拟, 研究了电池温度对其放电特性和锂离子浓度分布的影响, 并对电池内部不同热源的发热量进行了定量分析。目前大多数文献有关锂电池热特性的研究均采用热电耦合模型, 但很少考虑到锂电池的容量衰退问题。锂电池在充放电循环过程中, 负极膜会由于的沉积逐渐增厚导致锂电池内阻增大, 从而会引起锂电池发热率的显著增加。等在锂电池的热电耦合模型中考虑了循环衰退问题, 分析了温度对锂电池容量衰退的影响, 但是其对锂电池的容量衰退过程采用由实验数据拟合函数, 建立的模型和研究结果仅适用于其研究的特定锂电池, 缺乏通用性。等提出了包括锂电池容量衰退过程的热电耦合模型, 但其采用的正极活性物质的溶解仅在锂锰电池中较为明显, 不适用于钴酸锂和铁锂电池, 而且该研究未给出锂电池循环过程中的热量变化特性。
本文将同时考虑锂电池循环过程中的放电特性、热量特性和衰退过程, 对锂电池在充放电循环过程中的热量组成和热量变化特性进行数值研究。
因此我们对正极材料的要求如下
1、电池反应应该具有较大的吉布斯自由能,以保证可以提供高的电池电压;
2、放电过程中吉布斯自由能变化要小,以保证输出电压接近为常数;
3、正及材料应有低的氧化电位,即相对于金属锂有较高的电压;
4、尽可能轻,但有能储存大量锂,以保证具有较大容量;
5、具有良好的电子导电性;
6、在全部操作电压内结构稳定,保证有较长的循环寿命;
7、材料便宜低毒。
目前, 对于锂电池发热特性的研究, 主要采用数值模拟和实验分析。在等Doyle提出的电化学模型和等bernardi提出的电池能量方程的基础上, 国内外学者已经发展了多个锂电池热电耦合模型, 如采用热电耦合模型计算了锂池在不同温度下的放电特性, 并且分析了与温度相关的参数对锂电池放电特性的影响。
和采用热电耦合模型对卷绕式锂离子电池的温度进行了计算, 并对其内部不同热源的发热量进行了详细分析。j.vazquez-arenas等采用热电耦合模型对方形锂离子电池进行了模拟, 研究了电池温度对其放电特性和锂离子浓度分布的影响, 并对电池内部不同热源的发热量进行了定量分析。目前大多数文献有关锂电池热特性的研究均采用热电耦合模型, 但很少考虑到锂电池的容量衰退问题。锂电池在充放电循环过程中, 负极膜会由于的沉积逐渐增厚导致锂电池内阻增大, 从而会引起锂电池发热率的显著增加。等在锂电池的热电耦合模型中考虑了循环衰退问题, 分析了温度对锂电池容量衰退的影响, 但是其对锂电池的容量衰退过程采用由实验数据拟合函数, 建立的模型和研究结果仅适用于其研究的特定锂电池, 缺乏通用性。等提出了包括锂电池容量衰退过程的热电耦合模型, 但其采用的正极活性物质的溶解仅在锂锰电池中较为明显, 不适用于钴酸锂和铁锂电池, 而且该研究未给出锂电池循环过程中的热量变化特性。
本文将同时考虑锂电池循环过程中的放电特性、热量特性和衰退过程, 对锂电池在充放电循环过程中的热量组成和热量变化特性进行数值研究。
本文应用裡电池的热电稱合模型, 并考虑了电池循环衰退过程中SEI膜的变化对电池产生热量的影响, 详细分析了锂电池在循环过程中的热量变化及温度对锂电池寿命的影响, 得出如下结论:
1、在锂电池的高倍率(>5C)放电过程中,SEI膜产生的热量是锂电池发热量的重要组成部分, 占总热量的比率将超过14%;
2、随着放电循环的进行, 锂电池负极SEI膜将逐渐增厚, 且放电环境温度越高,SEI 膜增长越快,容量衰退越快;
1、在锂电池的高倍率(>5C)放电过程中,SEI膜产生的热量是锂电池发热量的重要组成部分, 占总热量的比率将超过14%;
2、随着放电循环的进行, 锂电池负极SEI膜将逐渐增厚, 且放电环境温度越高,SEI 膜增长越快,容量衰退越快;
3、SEI膜的厚度和电阻随放电循环次数的增大近似呈线性增大;
4、锂电池放电过程中的SEI膜产生的热量和温升将随放电循环次数的增加而逐渐增大。
目前,锂离子正极材料的性能和价格等是制约其进一步向高能量、长寿命和低成本发展的瓶颈,发展高能锂离子的关键技术之一是正极材料的开发。理论上具有层状结构和尖晶石结构的材料,都能做锂离子电池正极材料。与负极电池相比较,正极材料的发展稍显缓慢。原因在于其制备成实用的材料并非易事,制备过程中微小的变化都能导致材料结构乃至性能的巨大差异。一般来说,在锂离子电池产品组成成分中,正极材料占据着最重要的地位,正极材料的好坏,直接决定了最终锂离子电池产品的性能指标。而正极材料在电池成本中所占比例高达40%左右。锂离子电池正极材料已成为制约我国高性能锂离子电池发展的瓶颈。另外,在正极材料研究方面所取得的进展,也展示出锂离子电池正极材料发展的广阔前景 。因此我们对正极材料的要求如下
1、电池反应应该具有较大的吉布斯自由能,以保证可以提供高的电池电压;
2、放电过程中吉布斯自由能变化要小,以保证输出电压接近为常数;
3、正及材料应有低的氧化电位,即相对于金属锂有较高的电压;
4、尽可能轻,但有能储存大量锂,以保证具有较大容量;
5、具有良好的电子导电性;
6、在全部操作电压内结构稳定,保证有较长的循环寿命;
7、材料便宜低毒。
如果在高温环境中使用锂离子电池,比如350C以上的温度,电池储存的电量将会持续减少,由此导致电池的使用寿命不会像在常温环境工作中的时间那么长。在这种高温环境下给电池充电,电池将受到很大程度的损伤,由此影响电池的使用寿命。即使在较热环境中充电也会对电池造成不同程度的损伤,因此应该尽量避免在高温环境下给电池充电。如果在低温环境下给电池充电,比如低于40C的环境中,同样也会给电池造成损坏。
如果长期没有给聚合物锂离子电池充电,会降低其寿命。聚合物锂离子电池需要在电子长期保持流动的状态下才会达到其理想的使用寿命。聚合物锂离子电池在全球的商业化生产技术并不是很成熟,现在所占有的市场份额并不高。
目前,聚合物锂离子电池的市场价格要高于液态锂离子电池,相对于液态锂离子电池,其寿命长,安全性能良好,相信在不久的将来会有很大的上升空间。
如果长期没有给聚合物锂离子电池充电,会降低其寿命。聚合物锂离子电池需要在电子长期保持流动的状态下才会达到其理想的使用寿命。聚合物锂离子电池在全球的商业化生产技术并不是很成熟,现在所占有的市场份额并不高。
目前,聚合物锂离子电池的市场价格要高于液态锂离子电池,相对于液态锂离子电池,其寿命长,安全性能良好,相信在不久的将来会有很大的上升空间。