定制热线: 400-678-3556

电池知识

如果一直采用快速充电,动力锂电池的寿命会下降吗?

来源:宝鄂实业    2019-05-09 20:33    点击量:

这还不是最大的问题,真正影响电动汽车使用的还是充电时间长、充电设施严重不足。正常速度下,电动汽车的动力锂电池完全充满需要4-8个小时。如果加快速度的话,可以在1-2小时内充满,但会影响到动力锂电池的性能及寿命。

  已有实验证明,如果一直采用快速充电,动力锂电池的寿命会骤减至原来的三分之一,且电池性能会显著下滑,安全事故发生概率大大增加。内燃机汽车则不存在这样的问题,加油或者加气时间不超过5分钟,安全性和稳定性都能够保证,加上现在加油站非常普遍,使用非常快捷方便。更为重要的是,锂电池作为汽车动力的成本太高,已经占到电动汽车总成本的一半左右。

  体系严密 牵一发而动全身

  锂电池看起来结构非常简单,正极材料、负极材料、隔膜和电解液,再加上电极。事实上,别看它不起眼,锂电池材料体系非常严密,真正是牵一发而动全身。如果要动它哪怕一分一毫,假设只是一个电极换成新材料,没有长年累月的测试,谁也不敢打包票。

  锂电池从上世纪七十年代问世,到九十年代由索尼实现量产,再到今天锂电池已经诞生了近半个世纪,材料体系发生了较大变化。正极材料从最初的钴酸锂发展到现在的钴酸锂、锰酸锂、三元材料和磷酸铁锂并行,可谓是进步不小。

  但实际上每种正极材料从发明到实际应用再到锂电池量产,至少花费了上十年时间。每种正极材料的改变,就算不改变负极材料,其电解液的组成以及隔膜都要做出相应改变,以达到最佳匹配效果,同时还要经过长时间的安全测试,验证其安全性,最后还要经过产业化过程,这样才能步入市场。不仅如此,其还需要市场检验和客户认可,同样需要花费时间。这也是现在锂电池材料研究非常热火,各种新材料、新技术报道层出不穷,而锂电池本身进步缓慢,材料体系基本没有变化的根本原因。

  相比较而言,在不动锂电池材料体系的情况下,在制造工艺以及电池管理技术上改进就容易得多。软包电池的出现以及锂电池容量不断提升就是制造工艺技术不断进步的结果。

  同时,为了满足可穿戴设备等新产品的需求,松下开发出直径为3.5mm、长度为1cm的针型锂电池,三星则推出了直径3.6mm、长约20mm的超小型Pin电池。随着智能手机柔性化趋势凸显,各种柔性、可弯曲锂电池产品相继问世。在电池管理技术方面,特斯拉是其中的典范,其先进的电池管理技术,创造性将超过6000个圆柱型锂电池单体通过串并联方式成组,成功降低了电池成本,提高了储能效率,为特斯拉引领电动汽车变革奠定了基础。

  未来路在何方

  尽管特斯拉为电动汽车发展提供了全新的发展思路,但只是治标不治本,在锂电池性能没有明显提升的情况下,电动汽车想大规模推广难度非常大。那么问题来了,锂电池性能如何进一步提升?未来向什么方向发展?

  笔者认为,应用市场需求是带动锂电池进步最大的力量。二次电池的发展历史充分证明了这一点,镍镉、镍氢等电池的兴起在于小型消费电池产品市场的带动,而衰落也在于这一市场被锂电池所蚕食。Iphone采用的是聚合物锂电池,与普通锂电池和其他非锂充电电池一样,聚合物锂电池也需要在使用和贮存过程中也可以按照一定的方法以提高使用效率。除了在iphone设置上对软件和系统进行优化外,还可以从以下几方面着手:

 

  1、适宜的贮存温度:最佳温度是室温(22~25℃),适宜温度是运行时的0~35℃和贮存状态下的-20~45℃。

 

  2、锁定iphone:即通过点按睡眠/唤醒按钮,使iphone在一定时间内处于休眠状态,期间,除了能够接电话与接收文字信息,所有的触屏行为都不会产生作用。若想启动其他功能的使用,除非重新点按原按钮,使iphone处于唤醒状态。

 

  3、苹果官网上有一个说法值得参考,至少在三个月以内要对iphone锂电池进行一次完全充放电,目的是激活其中的钝化部分,从而加速聚合物电池活性电子在正负极间运动。

 

  4、充电器品种和充电时机的选择:iphone不能用FireWine电源适配器和车充进行充电,在没有专用充电器而使用USB为iphone充电时必须确认电脑处于开启状态,否则iphone就不是被充电,而是放电,并且直到关机为止。

 

  5、充电温度适宜,不能在高温下充电,特别是不要带着外套充电,一经发现iphone有发热现象就要立即取下外套。

 

  6、务必保证iphone不要经常处于亏电状态,聚合物电池比此前用于手机上的镍氢电池具有更高的功能密度,由于没有记忆效应,聚合物电池可随时充电,常常自动关机反而会破坏锂电池的正负极结构。

 

  7、如今,路边或者其他公共场所,都有快充的机器,但使用的时候注意,快充倍率最大不超过0.5C,即两小时快速充电,其后可以有两小时的补充充电。

经过多年的努力之后,纳拉延看到了锂-空气技术的前景,即用汽车自身补给的氧气取代石墨和其他的金属。这类电池可以变得更轻,更安全,而且供电时间也更长。但是研发新的混合物,将它们制成新材料,并检测其在数千辆汽车上的安全性,需要花费非常漫长的时间。

  纳拉延说:“目前没有一个指导性原则显示,我们能够年复一年地获得进步,也没有捷径可以走。要得到这种范式,唯有创建一种全新的化学反应,而这一点并非创新所能企及的。”

  当前,锂-空气电池必须克服堵塞、内部腐蚀和稳定性问题。即便空气电池能够顺利地演变为一种可行产品,纳拉延认为,在今后,电池技术将不再是“通用型”。“例如,对于电网存储来说,它或许不是什么好技术。尤其是有尺寸要求的行业,我们或许很快将看到多种多样的电池类型。”

  当前我们能做些什么:降低价格

  凯特林大学(KetteringUniversity)的凯文白和周轩(音译)在实验室中从事电池行业研究,但他们的谈吐更像是买车人而不是实验室的书呆子。周轩表示,现今的混合动力车存在多方面的优缺点。

  周轩说:“目前,混合动力的售价是每千瓦时500-600美元,但合理的价格应该是200美元。而且冷却系统的价格跟电池的价格是差不多的。如果汽车需要 6,000美元的电池,那么就需要6,000美元的冷却系统。”此外,凯文白指出,这类电池的体积蚕食了本应属于后备箱或乘坐的空间。两位科学家也认为,电动汽车不应给人们带来沉重的财务负担。

  但是谁也不知道,哪些现有材料才能构造出最安全、发热量最低和重量最轻的电池混合材料,而且其价格要比现有的产品便宜。

  现今在助听领域使用的锌-空气电池重新激起了人们的兴趣,而且尤为重要的一点在于,锌很容易获取。钠-空气电池也是一样,成本更低,而且组装起来更容易,只是潜在功率赶不上锂-空气电池。人们还尝试过用硅来取代石墨和固体碳,但是硅并不便宜。或者,我们可以只专注于改善实验室和摩托车使用的锂-铁电池的成本和性能。

  凯文白表示,建造更大规模的电池厂、开发更好的电池管理工具以及更加智能的充电电网在很多方面要比等待一两项新化合物获得成功更为实在。

  凯文白说:“我们实际上离使用全新电池的交通工具还很远很远。只有在新材料经过10年的测试之后,汽车行业才能放心使用新材料。”他表示,人们至少要等到2020年才能看见使用锌-空气电池的四轮车辆,然后,人们需要更长的时间才能看到这一电池技术的成熟。

  未来我们能做什么:纳米工程材料

  德克萨斯农工大学(A&MUniversity)教授、美国机械工程师协会(AmericanSocietyofMechanicalEngineers)能源和可持续性纳米工程小组成员帕沙·穆克荷吉表示,现在还没到放弃锂离子电池的时候。我们可能仍会用它,但它将与我们在实验室中获得新能力的材料混合使用。

  纳米工程师可能会对电池材料的分子结构进行深入研究,以加速电池单元电压的产生速度,并提升其转换效率。电解质携带锂离子的方式可能会发生改变,以杜绝 “交通拥堵现象”,并缩短充电时间。人们可能会设计出更薄、更强大但伸缩依然自如的电池膜,这样,即便电池受热膨胀,也不会爆浆。或者一心一意开发能够比碳、空气或任何已知材料吸附更多锂离子的材料。

  穆克荷吉说:“我们需要询问的最根本的问题在于,‘是否可以从头再来?’。这就是必须解决的中尺度模型。我们是否能增加材料的宽容度,以满足我们对于电池的诉求?”

  与此同时:着眼于长远

  一年前,伊利诺伊理工大学的塞格雷从美国能源部获得了340万美元的奖金,用于开发汽车用“流体电池”。流体电池将其活性化合物储存在外部储罐中,然后流经电池结构内部。塞格雷的工作专注于开发具有足够活性和能量的液体介质,以抵消液体的重量劣势。

  流体电池或许可以应用于汽车和电网,但却无法适用于手机或笔记本。与其他的研究人员一样,塞格雷深知,这将是一个漫长的实验过程,除非研究人员能够在偶然间发现几种能用于电池的不同材料组合。与此同时,“对于大多数人来说,这是一件尤为痛苦的事情,因为几年过后,电量没了,容量也下降了,然而电池供电的电子产品却在不断前进。

产品相关推荐