电池技术详解:锂电池为何会着火爆炸?从化学原理说起
化学原理
移动设备中使用的电池是化学工程的杰作:将大量的电量存储在一个小小的方块中,就可以让移动设备持续运行好几个小时。它是怎么工作的?如何才能发挥它的最大效用?
现代移动设备多数都使用锂电池,主要包含两个部分:一对电极和存在于它们之间的电解液。电极的材料有很多种,可以是锂,也可以是石墨,甚至可以是纳米线,但无一例外都要依赖锂这种化学成分。这是一种活性金属,因此容易与其他元素合成。纯锂的活性极高,甚至会在空气中自燃,所以多数电池都使用更加安全的钴酸锂。
两个电极之间是电解液,通常是一种液态有机溶剂,使得电子可以在其中流动。当锂电池充电时,钴酸锂分子可以俘获电子,然后在电池使用过程中释放电子,从而支持手机的运行。
锂电池是最常见的一种电池,因为它可以在最小的空间内存储最多的电量。这需要通过能量密度来衡量,也就是每千克电池所能存储的电量,以瓦时(wh)为单位。锂电池的能量密度一般在150至250瓦时/千克之间,而镍氢电池仅为100瓦时/千克。换句话说,锂电池比其他类型的电池更小、更轻,因此能够压缩设备的体积,但依然可以保持较长的电池续航时间。
上述化学过程可以归纳如下:设备中的电池可以存储电量,之后,内部的化学物质便会以任何可能的方式释放电量。但这同样会出现问题,例如,最新的波音787梦想客机的电池就会在飞机停靠时出现着火故障。
这是锂电池的缺陷之一:倘若电池放电过度,内部的化学物质便会分解,生成过量的氧化锂,从而燃烧,并生成更多的氧化锂,如此反复。化学家称之为“热失控”,普通人看到的是着火,这也是波音787被美国航空管理局(FAA)禁飞的原因。由于电池被刺破后也会发生同样的情况,因此美国运输安全管理局(TSA)建议飞机乘客将电池小心放置于随身行李中,而不要托运。
电池容量
电池容量的单位是毫安时(mAh),代表的是一块电池所能提供的整体电量。例如,倘若一块电池容量为1000毫安时,便可以在1小时内持续供应1000毫安的电流。如果你的设备电流为500毫安,那么这块电池的使用时间大约为2小时。
不过,一款设备的电池续航时间要更加复杂一些,因为特定设备的具体耗电量取决于它所执行的任务。倘若这款设备的屏幕点亮、无线传输功能开启、处理器全速运行,便会比屏幕关闭、无线传输功能关闭、处理器闲置时消耗更多的电量。
正因如此,消费者应当更加谨慎地对待厂商宣称的电池续航时间——他们可能会通过调低屏幕亮度,或是关闭部分组件的方式来延长续航时间。如果你感到好奇,可以使用一些专门的应用来监测移动设备的耗电量和电池状态,Android中的Battery Monitor Widget和iOS中的Baterry Life Pro都可以实现。
控制电流
由于有可能着火,所以必须对锂电池进行严密控制。电池厂商通过充电控制器来管理电流,从而实现这一目的。事实上,每一块电池都内置有一台小型电脑来防止其过度放电。这个组件还可以控制充电期间进入到电池中的电流,在即将充满时放缓电流,避免过度充电。
手机充电时,最后一部分电量需要花费更长时间才能充满
为了展示这一过程,我们对三星Galaxy Note手机进行了充电,并测量了整个过程中的电流,而且与对应的电量比例进行了对比。从上图可以看出,充电初期的电流最高,之后逐渐降低。最后一部分电量的充电时间很长,原因是控制器在放缓电流,避免电池过冲。
未来发展
电池技术一直在进步,全球各地的很多实验室都在研究新的电池技术,以便取代锂电池,或是开发更高级的锂电池技术。
在这些新技术中,很多都用到了超级电容,从而在瞬间存储电量,然后瞬间释放,效果类似于闪光灯。由于几乎不涉及化学反应,超级电容可以大幅加快充电时间,但目前的超级电容只能在一瞬间释放电量,不符合多数移动设备的要求。
Nectar燃料电池
能够利用氢元素发电的燃料电池也将很快诞生。今年1月的拉斯维加斯国际消费电子展(CES)上展示的Nectar燃料电池系统可以使用10美元的燃料桶来支持手机运行两个星期。然而,燃料电池的体积还不够小,无法安装在手机中——Nectar系统只能为手机内置的锂电池充电,但却无法取代锂电池。
硫磺最终也有可能用到锂电池中。美国斯坦福大学的科学家最近就开发了一种电池技术,可以利用纳米技术将硫磺加入到现有的化学成分中,最高能将锂电池的能量密度提升5倍,而且还能延长使用寿命。不过,这种技术无法在几年内投入市场
锂电池是大家非常熟悉的电子产品,目前广泛应用于手机、笔记本电脑及电动汽车等产品。不过,锂电池的声誉也为充电时间长、使用寿命短等顽疾所困。近日,新加坡南洋理工大学研究小组发明了一种新型快速充电电池,能在2分钟内充电70%,且使用寿命长达20年,是当前电池使用寿命的10倍。
锂电池主要由正极材料(如锂钴氧)、电解液和负极材料(如石墨)组成。每当充电时,锂离子从正极材料锂钴氧晶格中脱出,经过电解液后嵌入到层状石墨中;放电时,锂离子又从层状石墨的晶格中脱出,经过电解质后嵌入到锂钴氧中。在电池充放电的过程中,锂离子在正极和负极之间来回转移,所以锂电池也被形象地称为“摇椅电池”。近年来,科学家们对新型锂电池、尤其是高容量的锂硫、锂氧电池以及纳米硅电池的研发呈井喷态势,但由于合成工艺复杂、成本高、循环寿命短等原因,很多成果没能得到普及。
传统锂离子电池无法进行快速充电,主要受限于石墨电极的安全性能,并且电池工作时会在电极表面形成一层固体电解质膜,阻挡了锂离子的“脚步”,进而减慢了锂离子的运输速度。最新发明的新型锂电池的创新点在于,它使用超长的二氧化钛纳米管凝胶而非传统的石墨材料作为电池负极。这种新型材料不会形成电解质膜,锂离子可以飞速嵌入,进而达到快速充电效果。同时,得益于一维二氧化钛纳米凝胶的特殊结构,新型电池实现了寿命的突破,循环次数可达上万次。假设一天充电一次,可使用20多年。而且,此项研究所使用的二氧化钛(俗称钛白粉)原料成本低且易于加工,电池重复性好,可靠性也高,而且能与现有工艺无缝衔接,其工业化应用前景十分光明。
锂电池出现于上世纪70年代,1991年,索尼公司发布了首个商用锂电池,自此革新了消费电子产品的面貌。尽管锂电池应用越来越广,但其续航能力和使用寿命一直未得到有效突破,也制约了电动汽车等行业的快速发展。这项新的技术突破会给很多领域带来广泛影响,在移动设备领域,新型电池可以避免一些电子设备的“被迫淘汰”;电动汽车领域也将极大受益,不仅充电时间可由原来的几小时缩短为几分钟,用户也无需频繁更换价格昂贵的电池组(成本约1万美元),这为电动汽车的进一步普及带来了利好。
不过,当前锂电池的发展面临的一个瓶颈是:若想提高容量,势必要牺牲充电速度和循环寿命,而提升充电速度又难以维持较高的容量。未来电池的更新换代,一方面需要提高安全性能,比如对固态半固态电解液的研究,另一方面,需加快大容量正极材料的研发,实现锂电池在能量密度上的突破。总之,电池的正负极以及电解液材料需要协同并进发展,这样才能够在形态、容量等方面有更大的进步。