现在很多产品打着石墨烯的名称,到底真实石墨烯发展现状是如何的?
言归正传,说这是石墨烯超级电池是不准确的。这个团队只是利用规则的立体石墨烯泡沫对铝离子电池进行了改进,解决了铝离子电池阴极不耐操的问题
这个改良有效的增加了铝离子电池的能量密度(从30-60 Wh/kg 到 66Wh/kg),功率密度(从3-30kW/kg 到 175 kW/kg)和可重复充电性(从25k cycle到100k cycle)。
总体上说容量还是被锂电池完爆,但是功率和重复性和超级电容持平(文章观点)。
此外,比起锂离子电池,文章中提到铝离子基本上算无限的资源,所以说比锂电池要经济实惠。
但是作者这个观点是非常有误导性的,虽然铝电池的电解质材料便宜,但是作为电池整体更多应该考虑一下以当前工艺制造这种石墨烯电极的成本:
“GF-HC film was fabricated by either cast-coating (10) or wet-spinning (11) graphene oxide (GO) liquid crystal solution into GO film (12), followed by chemical reduction for producing reduced GO (rGO) film (Fig. 1B) and high-temperature annealing. Assembling of GO liquid crystal contributes to highly aligned graphene sheet structure, leading to higher electrical conductivity and mechanical properties than graphene foams composed of nonoriented graphene sheets (13). The rGO film was then annealed at 2850°C to restore atomic defects, converting into tens of centimeter-long continuous silvery GF (Fig. 1C). Such a high-quality, highly oriented GF could meet the requirements (i), (ii), and (iii) simultaneously. To access smooth paths for fast transportation of ions and permeation of electrolyte [for example, requirement (iv)], we introduced continuous channels into GF during thermal annealing by using a gas pressure effect caused by deoxygenating reaction (fig. S1A) (10, 14). The in situ gas pressure gave rise to hierarchically connected channels among graphene layers for both horizontal permeation and vertical infiltration. Thus, an ideal GF-HC cathode could be achieved with well-designed trihigh (that is, high quality, high orientation, and high channeling) and tricontinuous (that is, continuous electronic conductor of graphene matrix, continuous electrolyte/ion penetration way of channel network, and continuous active material of few-layered graphene framework) structures (15). As a comparison, control GF samples with fewer channels were fabricated, defined as GF-p with 0.2-kPa pressure and GF-Hp with 1-kPa pressure during annealing (see Materials and Methods).”
目前的资本市场对于石墨烯电池存在巨大的想象空间,但也有不少学者认为,石墨烯电池目前多方面技术难以突破,因此还是一种处于实验室的产物,距离其真正量产仍然遥遥无期。
中国石油大学教授李永峰持质疑态度。他认为,目前石墨烯在电池上的应用,主要是和硅结合在电池负极里面代替原来的石墨,这样可以提升电池的整体容量和充电速度,但性能提升效果有限,网上传言颠覆式提升并不太现实。
此外,石墨烯表面特性受化学状态影响巨大,批次稳定性、循环寿命等问题也比较难以满足锂电池生产的细致要求。
中信建投的报告同样显示,具备优异性质的石墨烯产品何时能走出实验室仍然是未知数。例如石墨烯作为透明导电膜使用时,其工业产品的制备便存在一定的瓶颈,使得产品中石墨烯原油的电导率低等特性无法发挥。由于单层石墨烯没有带隙,无法实现逻辑电路必需的晶体管开关功能,工艺复杂性程度大幅提高,因此其在微电子领域的广泛使用还有待时日。
之前三星宣布开发石墨烯电池的时候,就已经在材料圈子招了一波嘲讽了
“石墨烯电池”:不曾存在,仅仅是看起来很美而已石墨烯在锂离子电池中的应用,主要可能的方向一是作为导电剂,二是作为负极电极嵌锂材料。其实在这两点上,石墨烯都是在和传统的导电炭黑/石墨竞争。因此,严格意义来说,我们讨论的并不是“石墨烯电池怎么样”,而是石墨烯用在锂离子电池中有没有前途这样的一个问题。
a、成本问题
传统导电炭黑和石墨都是论吨卖的(一吨几万元),论克卖的石墨烯哪天能降到这个价?即使按照某些媒体报道的石墨烯降低到3元/克,换算成吨也要300万元/吨。要知道,现在锂电池用的各种材料,都是一吨几万十万左右的东西,而且天天承受着社会各界要求降价的压力,用石墨烯替代完全不现实。
b、工艺特性不兼容
石墨烯比表面积过大,会对现有锂离子电池的分散均浆等工序带来一大堆工艺问题。如果电池厂调工艺会累死,又没有性能指标突破性进步带来的足够的利润空间驱动,谁愿意上这个技术?石墨烯表面特性受化学状态影响巨大,批次稳定性,循环寿命等等都有很多问题,目前来看无法满足锂电池生产的一堆细致的要求。
c、石墨烯就是成本低了也不是硅负极的对手
如果石墨烯做负极(取代理论容量360mAh/g的石墨):理论上最多是石墨负极两倍的容量(720mAh/g),首次效率低的吓人,性能受表面状态影响极大,为什么不用硅?(硅的理论容量近石墨的10倍,在抑制粉化开裂方面这几年来已经有了很多科研和工业等级的成果)。硅负极这两年受到了各大电池厂商的重视,其中领军企业松下的4Ah18650电池就已经开始使用硅/碳复合材料负极,只是目前硅负极材料的循环寿命还不是足够的理想,因此还主要针对消费电子市场用途。
d、投入实用,到底有利还是有害,其实不太好说
石墨烯是可以做导电剂促进快充放,理论上可以提高倍率性能,但是如果分散工艺不到位混料不均,一切都是空中楼阁;另外碳家族物美价廉的材料多的很,并不存在非要使用价格昂贵的石墨烯的理由;并且而且石墨烯是2D材料,如果把它展开与电极活性物质复合,会堵塞锂离子扩散的通道。
e、石墨烯功能涂层铝箔
其实际性能跟普通碳涂覆铝箔(A123联合汉高开发)并无多少提高,反倒是成本和工艺复杂程度增加不少,该技术商业化的可能性很低。
总结一下:石墨烯用于锂离子电池,相对于传统炭系材料并无性能上的明显优势,而且纳米材料应用困难,成本高昂,发展前景堪忧。
诚然,石墨烯被认为是未来最具潜力的材料之一,但就目前而言,它的泡沫成分大于实际应用价值,阻碍这种材料普及的因素很多,可量产性和成本则是最主要的普及障碍,石墨烯电池要想在短期内彻底取代锂电池恐怕还有很长的路要走。