定制热线: 400-678-3556

电池专题

具有希望的下一代高容量负极材料是什么、

来源:宝鄂实业    2019-05-06 09:42    点击量:

普通的SiO虽然材料容量相对较高(1800mAh/g),但是首次效率较低(70%以下),而在1000℃下处理得到的C-SiO-Mg2SiO4材料首次效率达到了75.8%,如果我们在材料中再加入部分的Si后我们还能够进一步的提升材料的容量,在800-1200℃下制备的C-SiO-Mg2SiO4-Si-800,C-SiO-Mg2SiO4-Si-900,C-SiO-Mg2SiO4-Si-1000,C-SiO-MgSiO3-Si-1100和C-SiO-MgSiO3-Si-1200材料的可逆容量分别达到1825、1771、1711、1608和1299mAh/g(如下图a所示,电流密度150mA/g),首次效率最高也可以达到78.3%(1100℃),远远高于C-SiO和C-SiO-Si材料(70%以下),这表明MgO的加入消耗了材料中的部分SiO2,因此很好的抑制了首次嵌锂过程中的副反应,减少了活性Li的消耗。SiO材料由于嵌锂过程中更小的体积膨胀,因此理论上应该具有更好的循环性能,从下图d我们能够看到经过MgO处理后的SiO材料仍然保持了非常好的循环性能,在扣式半电池中循环100次后容量保持率仍然达到60%以上。

4.png

颗粒的粉化和破碎是引起Si基材料寿命衰降的重要原因,因此作者也采用SEM手段对循环100次后的电极进行分析(如下图所示),从下图a和b能够看到无论是颗粒的外观和横截面都几本保持了初始的样貌,没有发现明显的结构破损,这对于提升Si基材料的循环寿命是非常有利的。
 

5.png

下图为SiO材料的透射电镜图片,从下图a能够看到在900℃烧结后SiO材料的内部开始出现了Si纳米晶体,随着烧结温度从900℃提高到1200℃(如下图b-d),SiO中的Si纳米晶体的数量不断减少,晶体Si的尺寸有所增大,同时我们从C-SiO-Mg2SiO4-Si(下图e-g)和C-SiO-MgSiO3-Si(下图h和i)材料中能够观察到Mg2SiO4和MgSiO3产物。

7.png

MgO提升SiO材料首次效率的原理如下图所示,通常来说SiO材料并非严格的化学计量比材料,而是由分布在SiO2中的纳米晶体Si构成,在首次嵌锂的过程中Li会与其中的SiO2反应生成没有电化学活性的Li4SiO4和Li2O等产物,因此导致首次效率较低,如果我们采用MgO首先与SiO2发生反应生成Mg2SiO4和MgSiO3产物后能够有效的抑制Li的副反应,提升SiO材料的首次效率,同时反应产物Mg2SiO4和MgSiO3具有多孔结构,因此也能够很好的吸收Si材料在嵌锂过程中的体积膨胀,从而在一定程度上还能够改善材料循环性能。

8.png

SiO材料相比于SiC材料具有更小的体积膨胀和更加优良的循环性能,是一种非常具有希望的下一代高容量负极材料,但是内在反应机理的局限,使得SiO材料的首次效率远远低于石墨和硅碳材料,成为了制约其发展的关键因素,YuZhang等人通过MgO与SiO2反应生成Mg2SiO4和MgSiO3从而很好的抑制了Li在首次嵌入过程中副反应,减少了活性Li的消耗,从而大幅提升了材料的首次效率,并且该材料的制备方法具有规模化生产的潜力,目前在实验室级别已经能够完成公斤级样品的生产,因此具有广泛的应用前景。