导致锂离子电池能量密度和功率密度不足以满足目前持续增长的需求原因
来源:宝鄂实业
2019-09-21 10:13
点击量:次
自20世纪90年代锂离子电池(LIBs)成功商业化以来,已被广泛应用于便携式数字产品。然而,已有许多LIBs的能量密度和功率密度不足以满足目前持续增长的需求。
因此,考虑到电池系统的成本分布,探索具有优异的倍率性能和长循环寿命的负极/正极材料是至关重要的。虽然纳米级电极材料可以由短扩散通道和大表面积快速吸收和储存大量Li+,但是纳米颗粒的低热力学稳定性导致电化学附聚并且提高了电解质上发生副反应的风险。以下方法可以改善上述缺点。
1、从负极材料上提高能量密度和功率密度的方法
(1)多层自组装结构实现集成不同尺寸的材料的优点
在层状过渡金属氧化物中,Li和M (M =金属)阳离子占据O-阵列的八面体空隙。Li层位于两个相邻的MO6八面体层之间,Li离子具有二维(2D)扩散路径。例如,以下实际例子:
富Ni层状过渡金属氧化物
富Ni的层状过渡金属氧化物源自高容量的LiNiO2。由于例如氧化还原活性Ni4+/Ni3+的能带仅与Li1-xNiO2中的2p带O2离子的顶部略微重叠,因此当在以下范围内循环时,LiNiO2可以获得约200 mA hg-1的容量。然而,由于Ni3+离子迁移到Li层,LiNiO2受到非化学计量结构、结构退化和容量衰减的困扰。为了提高热稳定性和改善性能降低,已经研究了阳离子取代的层状过渡金属氧化物以及结构掺杂,如下。
(2)核心/蛋黄-壳层结构提供的协同效应
除了LiFePO4和LiMnPO4之外,LiFexMn1-xPO4也是一种很有前途的负极材料。例如Scrosati及其同事通过两步沉淀路线制备碳涂层的核-壳结构的LiMn0.85Fe0.15PO4-LiFePO4,很好的结合了LiMnPO4的高电位和LiFePO4的高稳定性。
(3)大孔、中孔和微孔的多孔结构适应体积膨胀并促进电解质渗透
独特的分层结构中有电解质膨胀的宏/中孔的网络和缓冲的保护性碳壳,有利于连续电子传导和快速离子传输。例如,以下例子:
尽管Li3V2(PO4)3具有比LiFePO4和LiMnPO4更高的电子传导率(≈10-7S cm-1),但是该值仍然很低严重限制了其功率密度。Mai和同事通过水热和退火处理制造了双连续的分层Li3V2(PO4)3/C中孔纳米线。分层结构赋予Li3V2(PO4)3/C纳米线具有增强的倍率性能和循环稳定性。当在3.0和4.3V之间循环时,该复合材料实现了高倍率性能和超长期循环性(3000次循环后容量保持率为80.0%)。在独特的分层结构中有电解质膨胀的宏/中孔网络和缓冲的保护性碳壳,有利于连续电子传导和快速离子传输。
(4)改变锂离子电池的负极材料
例如,最近麦立强教授和周亮教授团队发表的Chem. Soc. Rev. 综述,详细的总结了硅氧化物作为一种富有前景的锂离子电池负极材料。
2、从正极材料上提高提高能量密度和功率密度的方法
(1)纳米工程技术来增强转换型正极材料(CTAM)
“转化反应”通常是指Li+与过渡金属化合物(MaXb,M = Mn,Fe,Co,Ni,Cu,X = O,S,Se,F,N,P等)之间的氧化还原反应。其涉及具有高理论比容量的锂二元化合物(LinX)的形成和分解(方程式1)。通常,由M-X键的离子性确定的反应电位在相对于Li/Li+的0.5-1.0V的范围内,使得大多数过渡金属化合物都可以作为潜在的正极。
MaXb+ (b.n)Li++ (b.n)e-aM + b LinX (等式1)
在该等式中,LinX的形成在热力学上是可行的。然而,通过本体M粉末难以分解电化学惰性的LinX。因此,这种转化机制可逆性的关键在于形成高电活性M纳米颗粒以分解由固体电解质中间相(SEI)层包围的LinX基质。此外,电压滞后似乎高度依赖于转换型正极材料(CTAM)中阴离子物质的性质,以氟化物> 氧化物> 硫化物> 氮化物> 磷化物的顺序降低。
利用纳米工程技术来增强转换型正极材料(CTAM),以提高锂离子电池的能量密度。主要包括使用低维纳米结构、分层多孔纳米结构、空心结构和与各种碳质材料的杂交。
3、利用核心双壳电极促进柔性锂离子电池的高重量能量密度
虽然已报道的柔性材料具有优异的特性,但是它们主要的问题是机械稳定性程度。尽管碳纤维布(CC)的优异机械稳定性可以解决该问题,但CC仍然受到低表面积、更大重量和低存储容量的限制。正如Tong课题组所报道的在柔性CC核-壳阳极(CC@EC)上生长NiCo2O4纳米线(NCO NWs)来设计单片核-双壳(CDS@NCO CDS)。CC@EC@ NCO CDS电极显示出优于原始CC涂层NCO (CC@NCO)的锂储存性能。
4、稳定性研究
例如,Shi 和Koratka课题组利用范德瓦尔滑动界面提高锂离子电池中硅膜阳极的电化学稳定性。即通过在Si膜和集电器之间设计范德华“光滑”界面获得更好的电化学稳定性。简单地将石墨烯片涂覆在集电器表面来实现。形成的界面,Si膜在锂化/脱锂的作用下相对于集电器滑动,同时保持与集电器的电接触。电化学测试证实了沉积在石墨烯涂覆的镍(光滑界面)上的Si膜的更稳定的性能和更高的库仑效率。
5、安全性模型研究
电池能量密度的快速增长,伴随着锂离子电池成本的大幅降低,却带来了安全问题。虽然电动汽车电池组中储存的能量越多,行驶的里程越长,但由于电池会发生爆炸,导致事故将更加严重。因此,锂离子电池的安全性问题也越发受到重视、 1990年代に