定制热线: 400-678-3556

宝鄂文库

电池组并联使用为什么不合适?你了解并联电路的特点吗?

来源:宝鄂实业    2019-04-28 09:32    点击量:

长期以来,无论是国内还是国外,也不论是通信系统还是UPS系统,人们都习惯于用两组电池并联起来与一台UPS或一台通信设备配套使用。不知道是因为习惯势力还是因为别的什么原因,这种并联使用的方式竟成了设计者们和使用者们的一条必须遵循的原则,但笔者认为,则大可不必,只要用户能按照电池生产厂家的使用说明书对电池维护保养好,只用一组电池也就足够了,不但足够,而且这一组电池的使用效果(如:电池的稳定性、可靠性、均衡性、尤其是电池的使用寿命等)会比用两组电池并联使用时的情况好得多。特别是对于阀控式密封铅酸蓄电池来讲尤其是这样。那么,笔者为什么积极的主张(甚至是不赞成)不宜将电池组并联使用,并联使用哪些利弊呢?

 

首先我们来回顾一下并联电路的特点。在并联电路中,总电压等于各分路电压。也就是说,加在并联的两组电池中的每一组电池上的充电电压与总充电电压相等,即U总=U1=U2。又根据I=U/R的公式,经过计算可以得知,I1≠I2(因为两组电池的内阻肯定是不会一样的,即R1≠R2,在U1=U2情况下,肯定得出I1≠I2的结果)。这就是说,在同样大小的充电电压情况下,两组并联使用的电池组,其每一组所得到的充电电流是不一样的,内阻大的其充电电流小,内阻小的其充电电流大。这样,就有可能造成充电电流小的那组电池经常处于充电不足的状态,久而久之,这组电池可能因长期亏电而硫酸盐化更加加大其内阻,其内阻越大,充电电流更小,由于造成了这样一个恶性循环而导致这组电池的使用寿命大大缩短。而只用一组电池就不存在这种情况。就此一点,就足以说明电池组单组使用的效果远远好于并联使用了。因此,笔者建议用户在能够用一组电池就可以满足设备的需要情况下,绝对不要用两组电池并联使用,否则既会缩短电池的使用寿命,增加使用成本,又会降低电池的综合性能,不应该做这种劳民伤财的事情。如果因为设备的功率大,用两组电池并联仍不能满足设备功率需要的情况下,而采用2组以上,如3组、4组,甚至更多组的电池并联使用,那就更无必要了,两组电池并联使用已经带来了诸多的不利,更多组电池的并联使用就更复杂,更不利了。在这种情况下,一定要选用能够满足设备功率需要的大容量型号的电池就可以了,若12V系列电池中没有大容量规格的,可以选用2V系列电池,2V系列电池中,各种大容量的都有,可以说你需要多大的就可以做成多大的,据笔者所知,目前国内已有的2V系列电池最大的可以达到6000Ah。

 

当然,设计者和使用者从提高备用电源供电的可靠性这一点来考虑也是可以理解的,怕万一交流电停电时,两组电池中有一组不能供电时还可以有另外一组电池来保证,即使是干???点劳民伤财的事也值。假若是从这一角度出发而考虑采用电池组并联使用,笔者也只赞成最多用两组电池并联,若2组以上并联那绝对是有害无益之举。假若非采用2组电池并联不可的情况下,请大家也应同时遵循以下原则:一是并联使用的电池必须是同一个厂家生产的,且是同型号、同规格的电池;二是并联使用的电池必须是新旧状态一致的;三是同一批号同时出厂的;四是同时安装同时使用。

 

铅酸蓄电池是一个正极、液体传质受限的水电化学体系。这个体系在运行过程中会有气体产生(析氢、析氧),造成水的损耗。因此需要进行添水补液的维护。

 

免维护(指不需加水补液)是人们最朴素的本能要求,在实现铅酸电池免维护的进程里,已经走过很漫长、很曲折的道路,其中不乏采用催化消氢、辅助电极等途径。


4、利用供电高峰充电

 

对于UPS电源长期处于市电低电压供电或频繁停电的用户来说,为防止电池因长期充电不足而过早损坏,应充分利用供电高峰(如深夜时间)对电池充电以保证电池在每次放电之后有足够的充电时间。一般电池被深度放电后,再充电至额定容量的90%至少需要10~12h左右。

 

5、注意充电器的选用

 

UPS电源用的免维护密封电池不能用可控硅式的“快速充电器”进行充电。这是因为这种充电器会造成蓄电池同时处于既“瞬时过流充电”又“瞬时过压充电的恶劣充电状态。这种状态会使电池可供使用容量大大下降,严重时会使蓄电池报废。在采用恒压截止型充电回路的UPS电源时,注意不要将电池电压过低保护工作点调得过低,否则,在它充电初期容易产生过流充电。当然,最好选用既具有恒流,又有恒压的充电器对其进行充电。

 

6、保证电源环境温度

 

电池可供使用的容量与环境温度密切相关。一般情况下,电池的性能参数都是室温为20℃条件下标定的,当温度低于20℃时,蓄电他的可供使用容量将会减少,而温度高于20℃时,其可供使用的容量会略有增加。不同厂家不同型号的电池受温度影响的程度不同。据统计,在-20℃时,蓄电池可供使用容量只能达到标称容量的60%左右。可见温度的影响不可忽视。

 

当然,要延长电池组的使用寿命不但在维护使用上要注意,而且在选择时就应充分考虑负载特性(电阻性、电感性、电容性)及大小。不要长期使电池处于过度轻载运行,以免电池放电电流过小导致电池报废。

 

通常有两种方法。

 

第一种方法是通过测量电池瞬时短路电流来估算电池的内阻,进而判断电池电量是否充足;第二种方法是用电流表串联一只阻值适当的电阻,通过测量电池的放电电流计算出电池内阻,从而判断电池电量是否充足。

 

第一种方法的最大优点是简便,用万用表的大电流档就可直接判断出干电池的电量,缺点是测试电流很大,远远超过干电池允许放电电流的极限值,在一定程度上影响干电池使用寿命。第二种方法的优点是测试电流小,安全性好,一般不会对干电池的使用寿命产生不良影响,缺点是较为麻烦。

 

笔者用MF47型万用表对一节新2号干电池和一节旧2号干电池分别用上述两种方法进行测试对比。假设ro是干电池内阻,RO是电流表内阻,用第二种测试方法时,RF是附加的串联电阻,阻值3欧姆,功率2W。

 

实测结果如下。新2号电池E=1.58V(用2.5V直流电压档测量),电压表内阻为50k欧姆,远大于ro,故可近似认为1.58V是电池的电动势,或称开路电压。用第一种方法时,万用表置5A直流电流档,电表内阻RO=0.06欧姆,测得电流为3.3A。所以ro+RO=1.58V÷3.3A≈0.48欧姆,ro=0.48-0.06=0.42欧姆。用第二种方法时,测得电流为0.395A,RF+ro+RO=1.58V÷0.395A=4欧姆,电流500mA档内阻为0.6欧姆,所以ro=4-3-0.6=0.4欧姆。

 

旧2号电池用第一种方法测量时,先测得开路电压E=1.2V,电表内阻RO=6欧姆,读数为6.5mA,万用表置50mA直流电流档,ro+RO=1.2V÷0.0065A≈184.6欧姆,ro=184.6-6=178.6欧姆。用第二种方法,测得电流为6.3mA,ro+RO+RF=1.2V÷0.0063A=190.5欧姆,ro=190.5-6-3=181.5欧姆。

 

显然两种测试方法的结果基本一致。最终计算结果的微小差别是由于读数误差、电阻RF的误差以及接触电阻等多方面因素造成的,这种微小误差不致影响对电池电量的判断。如果被测电池的容量小、电压高,则应将RF的阻值适应增大。