定制热线: 400-678-3556

宝鄂文库

阀控电池是怎样发生水分解的?稳定、平衡的阀控电池有待实现吗?

来源:宝鄂实业    2019-04-28 09:35    点击量:

荷电氢的来源一般是过充电和/或电解。荷电氢并非氢气,而是离子形式与电子形式。

 

阀控电池充足电后,在阳极发生水分解,分为三个部分:

 

第一部分:扩散到大气中去的氧(O2)第二部分:扩散到电池电液中去的氢离子(H+)第三部分:在电路上流动的电子对于富液式电池而言,氧(O2)从电池中逃逸出去,正是因为氧的逃逸,荷电氢(离子形式和电子)就自由自在地进入负极,结果在负极上结合成氢气,同时使负极充电,这时负极只有极化,很少或没有去极化。

 

对于阀控电池来说,情况就不一样,氧不会逃离电池,而是氧、氢离子、电子一起在负极复合为水,这时的负极既有极化,还有去极化(氧复合)。这时的负极只谎称是荷电氢源。

 

在阀控电池内部当氧复合效率达100%时,从电液来的荷电氢(离子形式和电子)趋于枯竭,这时又靠什么来保持负极充电?回答这一问题不难,这是由于还存在另一个荷电氢源,这个荷电氢源就是阳极板栅的腐蚀。阳极板栅腐蚀会从水中吸取氧和释放相应量的荷电氢(离子形式和电子),它迁移到负极,有助于对负极充电。

 

在这种成熟的阀控电池内,负极真正是一个有用的荷电氢源。不过这一荷电氢源主要取决于阳极板栅的腐蚀速率。

 

外电路上的电子未表示出来,但很清楚氢离子流的形式总是与电子流性相反、量相等。从以上这些表述来看,平衡电池的概念是负极既不极化,也不放电,这是理想化的阀控电池。一个成熟的阀控电池内部气体反应效率100%,并不会影响电池的氢平衡,那是一种可逆电解的形式、只是正极充电(极化),负极是去极化。氧循环是密封的关键,但氧对负极的去极化(化学放电)会使负极析氢电位大大地变化,正极板栅腐蚀大大加速,电池失水严重,电液干析氢与正板栅腐蚀达到平衡,这就到了平衡电池的程度。

 

阀控电池有了催化装置:负极局部反应产生的H2与正极板栅腐蚀析出的O2,在催化装置内化合成水回到电池。H2的直接催化变为水,可以大大减少水耗,而且从正极来的O2直接可以催化成水,不必经由负极复合,这样使负极的去极化作用减轻,也能使正极电位降下来,从而减少正板栅腐蚀与氧的析出。

 

有了催化装置的阀控电池,在理论上是真正的长寿命设计,这是由于既有阴极氧复合的水循环、又有催化直接氢氧化合的水循环,从而水耗大大减少,电池很难发生干涸现象。若再配合使用特种耐腐蚀合金,应用负极低自放电率配方,真正长寿命的阀控电池就能实现。

 

催化装置用来校正阀控电池内部的不平衡,氢氧可以直接催化为水,还可偷猎从氧循环来的氧,因此未被复合的荷电氢(电子和离子形式)到达极化的负极。据测算大约5%左右来自氧循环的氧是通过催化剂这条途径消耗,电池越好,来自氧循环的氧就少。

 

催化装置可以移出某些超量的氧。修复电池。使之完全平衡,并能减少负极化学放电(氧复合)。阀控电池用的催化装置比富液式电池的催化栓产生的热量小得多。通常富液式电池一般50W/只,会损坏催化栓中的催化剂;阀控电池用催化装置,发热量仅几分之一W/只,发热不致损坏催化装置。阀控电池内空间比富液式电池要干燥,对催化装置中的催化剂长效性有利。

 

阀控电池的催化装置誉为平衡器,能使阀控电池有个平衡设计,能够真正治疗多病的阀控电池,实现长寿命设计。

 

一个长寿命、稳定的、平衡的阀控电池如果以前未能实现,那么应用催化装置就变得非常有吸引力。特别要求在高温环境中实现阀控电池的长寿命,催化装置的应用就显得尤为重要。下一步是如何设计催化装置适合阀控电池使用,由于篇幅,将在下篇对催化装置的结构设计再作介绍,就教于同行专家,以臻完善。